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Preface

I was a rainy day in December and we were sitting In an office at the MNuclear
Physics Center In Lisbon deeply invelved In a heated discussion about the opening
of this book Should we follow the standard practice, or should we paint the big
pleture? True to our main moetivation, after hours we finally agread.

The human fascination for a clear starry sky Is timeless. It has been around
since the early days of mankind, and includes the most diverse cultres. Only in
the last century, nuclear physics has started to make a very Important contribution
to owr understanding of these phenomena in the sky. And until the present dav,
mmany big questions connected to nuclear reactions remalin to be answered. One of
the prime examples listed amongst the eleven most Important physics questions for
our century is this: "How and where are the heavy elements produced?.

Why ancther book? For decadss we have come across colleagues, including ex-
perimentalists, who would like to learn more about reactions. Some have become
fluent in mnning reaction cedes, but cannet find a book at the right levaltolaarn the
theory assoclated with the caleulations they are performing. Probably the largest
push toward embarking on the adventure of writing thiz book came after several
years of teaching reaction theory to graduate students. The reference nuclear reac-
tion books have been around for decades, and even though there have been some
more recent efforts, nowhere could we find the appropriate level, detall, connection
to the present experimental scene, the gulding metivation of astrophysics, and the
content consistent with that metivation. Seo, five years ago, we comvincad ourselves
thiz was something worthwhile deing.

Whe 1s the book for? This book is primarily directed to physics graduate stu-
dents with an interest in nuclear physics and astrophysics. It should serve as a
practical guide to experimentalists that need a better understanding of the reac-
tion theories available for the various processes. We hope it can also be a useful
referance book for the experts in the matter.

What iz different about this book? It contains the standard direct reaction theory

vi



Preface il

starting from the two-body scattering problem but, rather than expanding toward
theories that have not been implemented, it focuses on those that are In use or are
being developed. We have tried to present all derivations so that it iz easier for the
smdent to follow. We have also tried to make clear the limits of applicability of
specific models, and to show examples that can be directly compared with data.

Howr 1z the book crganized? The first two chapters were written at an introdue-
tory level, where the stage of nuclear astrophysics Is set and the basic definitions
are introduced. Next there are eighty pages of solid scattering theory, which is by
far the biggest hurdle a student will have to overcomne. Thiz iz the central theory
component, together with the next two chapters on coupling potentials and stre-
ture medals. We have provided a chapter on the mest commoen approximations
used in this field. More advanced chapters then cover specific types of reactions.
And eventunally we bring the reader back to astrophysics, introducing the reaction
rates Into reaction networks in stars and explosive environments.

Throughout the becok, as the various reaction mechanisms are dizcussed, we
provide speciic examples of relevance to astrophysics and connect back to the
astrophysical scenarios set in our first chaptar.

In addition to the astrophysics motheation, we have kept In mind a strong connec-
tion to experiment. Here, calenlations are important so there is a chapter dedicated
to numerical methods. Data Is Important, so thers is a chapter on experimental
details. And the comparizon between theory and experiment Iz Important, thus the
chapter on fitting data.

Ancther essential component of this project iz the assisted hands-on experi-
ance. The book comes with a reaction code (FREsCO), and for many examples
addressad in the book we provide the Inputs to the reaction code so that the readers
can perform the caleulation by themselves. An appendix for *Getting started with
FrEzCO Iz also provided.

What 1z laft out? Although we expanded on the number of pages significantly,
1t iz clear that this book deoes not cover everything that could be contained in such
a title as ‘Muclear Reactions for Astrophiysics.” From the start, our decision was to
focus on direct reactions, and leave outthe whole area on central collisions and the
speciic field of heavy-lon fusion. For each type of reaction included, we prefer to
presant in detail a small number of models that are Implemented and in commen
use. In this sense the book is not extensive, and should not be used as a review of
the fizld.

What background is neaded? A background in quantum mechanics and angular
momentum theory is required, although ne previous knowladge In scattering theory
or nuclear physics Iz necessary. We have tried to make this a self-contained book
and, in particular, scattering theory iz developed from scratch.

Where to stop? Writing a book can be a never-ending task. It certainly took
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us longer than we had originally intended, neor iz it in the perfect shape we had
first envisaged, specially at the graphical level However, as with many things In
life, one has to know when to stop, and our sense iz that in its present form this
book can already be very helpful to students and researchers. We hope you can
learn with it the techniques and the many interesting aspects of studving nuclear
reactions for astrophysics. We will surely come back to owr heated discussions on
how best to present the material. Be it seen from the Café a Brasileira in Lisbeon, the
Horticulture Gardens in BastLansing or the Golden Gate Bridge in San Francisce,
the sky will present itself with the same fascination as always.
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1

Nuclei in the Cosmos

There iz a coherent plan in the universs, though I don’t kmow what it's a plan for.
Fred Hovle

In order tounderstand about the composition of stars and how they produce energy,
we nead to know about miclel, and about the reactions which they undergo. This
chapter provides an introduction to the description of miclel, and surveys the rangs
of acenarios in which impertant reactions occur. We begin with the Big Bang, then
discuss energy production eyeles In stars, and finish with an outline of some of the
processes by which we think that heavy elements are produced in supernovas and
cther stellar emviroments. The more detailed discussion of nuclear physics begins
In Chapter 2, to which the more advanced student Iz directed.

1.1 Nuclei
1.1.1 Properties of nuclei

Bach isotope (A, Z), characterized by mass sumber A and charge Z, hag In its
ground state a rest mass my 7. This total mass is less than the sim of the masses
of the constituent protons and neutrons due to the binding energy of the system.
Energy iz released when the bound state is forrned. The binding energy may be
caleulated by

B(4, Z) = (Zmy 4+ N, — ma z)ct, (1.1.1)

and iz the energy required to break up the nuclens into its A constiment micleons.
The mimber of neutrons is W = A — Z. Aunit atornic mass (1 u) has rest energy
mact = 031,454 MeV.

The binding enervey pev nucleon B A dictates whether energy st be suppliad
or will be releazed in the fuslon of two nuclel to form thelr composite. The values
of B(A, Z)/A are shown in Fig. 1.1 for all the long-1ived 1sotopes. The larger the
energy one needs to supply to release a micleon, the more stable is the nucleus.
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Fig 1.1. Binding energies per nucleon, B{ A Z1/A, for all naturally occurring long-lived
izotopes of A nucleons.

The most stable izotope iz near %%Fe. a5 seen from Fig. 1.1. If two muclel A and
As fuse to form A = A + Az, then the reaction is typically exothermic and energy
Isreleased i A = 56, If A 2 56 then fusion reactions are typlcally endothermic
—energy is required — so we might expect the opposite process, fission, to be more
likely. Fission cccurs spontanecusly for many nuclel Z 2 80, called the actinides.
The most stable nuclear isotopes for Z % 20 have W = Z, whereas heavier
micleltend to have more neutreons, to compensate the Increased Coulomb repulsion.
H we make a plot with /W as the horlzontal axis and Z as the vertical axis, we have
the Segré chart of Fig. 1.2, Bach row is a distinct chemical element, and the stable
Izotopes are the dark squares roughly along the diagonal. The naturally-cccurring
muclel, with the longest lifetimes, are sald to cccupy the valley of stability. Nentron-
deh nuelel are shown below, to the right of the valley of stability, out to the xeutron
dripline, the point beyeond which one cannet form bound states, no matter how
many neutrons are added to the systern There 1s a large gulf between cbserved
Isotopes and the predicted neutron dripline, especially for heavy elements.
Conversely, proton-rich nuclel, although they are not so numerous, can be seen
above the central valley out to the dripline where proton emission (proton radicac-
tivity) occurs. Most proton-rich muclei for A < 200 have been cbserved. Nuclei



1.1 Wuclel 3

120}
126
100
o [ R — e -
o 80F . i.lf"" L=
g oo plive = =
pras AN T M
E &0 =50 |—
M _ i crh
=2 Ij.ll"lr_ neuon-ditplin
N=23'EI_F JI'I nnﬂﬂﬂmum =2
L Ec_l'-irrr I‘JUd obsenved
20 N=_a]_,7_~, i Z=30
[mf‘”m B =k
r_n.rmj'1 =3
[
'D f | 2 | | | | | | | |
0 20 4 £ &0 100 120 140 160 180

MNeutron Number

Fig 1.2 Chart of stable and radicactive izotopes. Vertical and horizontal lines reprezent
magic numbers. Figure courtesy of Mare Hauzmann.

between the driplines have ground states that are stable to nucleon emission, but
mmay still slowly G-decay (see Section 2.2 for timeacales) by the weak interaction
(see for examnple the reactions 1 2.4), or radioactively decay (also slowly) by fission
of ce-particle emission.

1.1.2 Nuclear reactions

H a miclear reaction is performed in a laboratory, let the profectiie be called A, the
trget called B, and the residual suclel be C and I, The combination of A and B
iz called the emtrapce charrel, and that of C and D is called an exit chawwel (more
than one final channel may be possible). Then the reaction is labeled BiA,CID,
which iz the common way of writing

A+B-C4+D. (1.1.2)

Given all the Isotopic mass values, we may calculate the energy required or re-
leased. This energy, called the g-value for the reaction, Is

§ = (ma +mp — mc —mp)e’ (1.1.3)

Exothermic reactions have §) > 0, whereas a § < O reaction is endethermic.
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combined potential (zolid line) has a maximum height of Vg, forming the Coulomb barrer

1.1.3 Forces in nuclei

There are four forces in nature: the strong, electramagnetic, weakand gravitational
forces. The strong or muclear forces are dominant in binding nuclel, but the other
forces still have important roles to play In muclear astrophiysics. The electromag-
netic force 1z responsible for the Coulomb repulsion between protons in nucled,
and the decrease in binding for heavy nuclel ssen in Fig. 1.1, The weazk interaction
plays a role whenever reactions inveolve neutrines; we will see some examples of
thiz later in this chapter (Bqs. (1.2.1) and (1.2.4)). The gravitaticnal attraction is
not significant inside nuclel, but iz responsible for creating galaxies and stars in the
first place, and then compressing them to the stage where nuclear reactions begin.

1.1.4 The Coulomb barvier

In order that a miclear reaction takes place, the nuclel invelved have to be closs
to 2ach other, but this 1z hindered by the Coulemb repulsion betwaen the protons,
which acts at longer distances compared with the muclear force of short range.
The overall potential energy between two charged nuclel separated by a distance
F therefore follows the pattern shown in Fig. 1.3, There Is a repulsive Coulomb
Barrier of height Vg, and scattering at energies £ < Vg still exists because of
quantum tunneling through the barrier.

The exponential reduction of reaction rates for charged particles reacting at low
relative energies will be extremely Important in all astrophysical scenarios, and will
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The zolid curae iz a caleulation to be discuzzed in Appendix B.

very often be the limiting factor for nuclear reactions. We will see (Section 2.4)
that reaction rates are defined by the quantity o, called the cress section. Because
cross sections o &) drop rapidly with decreasing center-of-mass energy £, due to
the Coulomb repulsion, we factorize out a simple energy dependence according to

al &) = %E_ZWS(E) (1.1.4
to define an astrophysical S-factor, S(E), which should vary less strongly with
anergy. The 1/5 geometrical factor is associated with the wavelength of the in-
comming particle, and the exponential factor represents the penetrability through
the Coulomb barrier. It depends on 1, the Sommerfeld parameter | defined as
1 = Z12z¢" f(Fv) (Bq. (3.1.71)) where Z1Zze” is the product of charges and v the
relative incident velocity. In Fig. 1.4 we show, In the upper panel, the cross section
for the e capture on “He to synthesize "Be. The reaction cross section falls off
rapidly as the energy decreases, whereas the S-factor, shown In the lower panel, is
nearly constant.

1.2 Primordial nucleosynthesis

Having se2en how nuclei and thair reactions can ba characterizad, we now look at a
range of miclear reactions in astrophysics, starting at the beginning. A schematic
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Fig 1.5 History of the Universs, from the Big Bang to present times. Figure courtesy of
Jon Whiting.

lmstration of the evelution of the Universe immediately after the Big Bang is pre-
sented in Fig. 1.5 and briefly described in this section.

Following the Big Bang, the Unlverse expanded and cocled with a temperature
of Ty == 15/+/% for time ¢ in seconds and temperature Ty in units of GK = 10°
K According to thermodynamics, this temperature corresponds to an energy of
£ = kgT, where the Boltzmann constant is kg = 1.38x107%° TK™* = 0.0861
MeV GE ~1. This means that the material in the expanding Universe had an average
thermal energy of & &= 1.3/ MeV.

For very early times £ <0 1 s, the thermal energy £ was greater than 1 MeV. In
particular, £ was greater than (mgp—m,)c? = 1.24 MeV, the difference in the rest
anergies of the neutron and proton. At these times, therefore, there was enough
radiative energy available to easlly comvert neutrons to protons, and back again, in
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Fig 1.6, The dominantreactions in primordial nucleosynthesis, after Kawano [1].

a statistical equilibrinm by processes such as

n+et — p+ 7.
P+e — n4ug
e 4ot = 4y (12.1)

where -y are photons, and ., and ¥, are electron neutrines and anti-nentrines. The
electrons e~ and positrons e* are commonly called beta () particles. The third
reaction of (1.2.1) is the annihilation/preduction of electron-positron pairs in the
high-temperature radiation envirenment.

Cnly after two seconds did the Universe cool down enough to enable the neu-
trons and protons to retain thelr identities (£ = 1 MeV); this was the beginning
of the astrophiysics of nuclel At thiz point there begun a period of about 250 5
in which a primendial rucleosynthesis took place, and neutrens and protons com-
bined to form hydrogen and helium isotopes, and perhaps a few lithinm nuclel At
the beginning of this peried there were only neutrons and protons, with a relative
murnber density deterroined by their mass difference according to the Saha equation

Tin (mn—mp) C.z
" o [‘7@@ ] , (122)

an equation that will be derived in Chapter 12. When kT 5 (ma—mp)ct, we
have 11, & 72p. Ag the temperature dropped, there was a freeze-ouwt In which the
small w, — 1y difference led to the residual neutron and proton ratio of wg frag -
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Table 1.1. Isatopic aburdances ¥, from primovdial nucleasynthesis [2], defined
by the fraciion of nuclides § to the mumber of all nucleons The wucleon number
density Is then Xy = AY of nucleons i that isotope of mass A;. Novmaligrion

"'I'FZf, X, =1

Izotope Muclide fraction ¥;  Mucleon fraction X
1H=p 075 075

*H=4d 244 x 1075 488 = 1075
"He 1.0 3 107% 3010
e 0062 0.2481

511 1.1 1074 6.6 x 1074
"Li 493107 34.3 x 10~

1/8. This ratio mavy be found from a caleulation that balances the cooling rate with
the actual transition rates of the reactions {1.2.1) abowva.

Two protons or two neutrons cannet form a bound state, but a neutron and a
proton may collide and form a deuteron, abbreviated d or *H. This reaction releases
anergy (& = 2.226 MeV) In the form of a photon and the recoll energy of the
deuteron:

n+p—d+-. (12.3)

This iz what we call a captire reaction. These deuterons react sasily with other
protons and neutrens, giving rize to a series of reactions, the dominant ones of
which are lllustrated in Fig. 1.6. Tritons *H () can be formed, the hvdrogen isotope
with one proton and two neutrons, as well as halinm isctopes with two protons and
sither one neutron (*He) or two neutrons (*He). The binding energy of the deuteron
is one of the most fortunate coincidences in the Universe. The Universe took about
7 mimites to cool down to 2,226 MeV, and the neutron lifetime is slightly above 7
moinutes. Had these two numbers not propearly matched, thers would have been no
neutrons to initiate the whele primerial nucleosynthesis.

By time £ == 250 g, the thermal energy & was 0.1 MeV, and all these primordial
reactions came to a stop, excapt for the decays of neutrons, tritons and "Be. These
last three miclel were produced in primeordial nuclepsynthesis, but are not them-
selves stable, as they decay with lifetimes of 10.3 minutes, 12.3 years and 53 days,
respectively, by weak imteractions In what Is called F-decay:

n— pte +%:,
t — *Hede +7
"Be — "Litet + 1. (12.4)
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Eventually, all the neutrons and radicactive nuclel transmuted into stable nuclei,
such that only very small fractions of "Li, and practically no "Li remained. As a
consaquance, the initial composition of the Universe was almost entirely p, d, *He,
Ha, a—, - particles and neutrines. This primeval ratio of abundances, listed In
Table 1.1, can still be observed if we avold regions where further reactions have
talcen place, such as in low-metal stars.

Wery few nuclel heavier than helinm are formed at this stage. One reaszon for this
iz that there are no stable muclal with 3 nucleons, nor with 8 nucleens. The longest-
lived isotopas with 5 nucleons are *Heand "L1, but these emit neutrons and protons
respectively. For element production there are thus bottlenecks at mass numbers of
5 and B that will be later bridged by other means.

Very little further happens until the Universe reached time ¢ = 3.8x10° y, when
the ternperature and energies were low enough (7"~ 4 10° Kand £ ~ 0.4 eV) for
electrons to remalin bound to nuclel In atoms. At that peint, the atemic era started.
After ¢ ~v 10% v, stars and galaxies were formed, giving way to stellar nucleosyn-
thesis. Bwventually some stars collapsed, heated up, and completely new cycles
of nuclear reactions took place. This iz how many heavier miclel were produced.
These processes continued to repeat themsalves until the presant day.

1.3 Reactions in light stars

After stars are formed by gravitational attraction, thelr contimied contraction com-
presses the constituent gases and raises thelr ternperature. If the star has a mass
above a minimum of about 0.1 selar masses (0.1 Mg), then the temperature rises
to T~ 10—15x10° K and the density to p ~ 10% gem™2, and nuclear hydro-
gen burning can start. The releass of energy in the resulting nuclear reactions is
sufficient to stop further gravitational collapse, and the star remaing in a phase of
hydrostatic equilibrinm. The comprassive gravitational pressure Is balanced by the
expansive gas pressure of material heated by the nuclear reactions. Different initial
stellar magses give rise, In this phase, to the range of main sequence stars repre-
sented in Fig. 1.7. The Hertzspmng-Russel diagram (H-R diagram) is a standard
repregentation of stars in terms of thelr surface temperature and lnminesity. Many
stars are aligned roughly according to Stefan’s law of L o R®7*, and form what
iz called the maln ssquence. This corresponds to stars in their hydrogen burning
phase.

1.3.1 Preton-praton chains

The first series of nuclear reactions in a new star with mass M < 1.5 Mg iz the
proton-proton chaln. Thiz has the overall effect of converting 4 protons into one
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e particle (a *He nucleus), along with two positrons (2 e¥), two neutrines (2 v),
and 26 MeV of released energy. It does not do thiz in one step, but via a chaln that
starts with

P+p—dtet +u  (§ =1.44MeV), (13.1)

This reaction, Invelving neutrines, proceeds by the weak teraction, and has a very
low reaction rate. In fact, its rate 1s so low that it has never been measured directly.
The slowness of this initial step Is what iz responsible for the long lifetime of stars
in their hydrogen burning phase.

Following the formation of the deuteron d (*H), a subsaquent proton capture
reaction

d+p—*Hedy (G =540MeV) (1.3.2)

may readily occur. The reaction d + d — *He + -y may also occur, but is less
likely since protons are much more abundant than deuterons at this stage: about 1
deuteron for every 10% protons.

A second proton captwe on *He cannet succead because L1 is unbound, but
other possible reactions invelving *He are (in Chain I):

"He + *He —» *He + 2p+7 (G = 12.86 MeV), (13.3)
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Fig 1.3 The proton-proton chain has three branches I, 1T and 10 which retain different
quantitics of cnergy ¢}, within the stac

or
*He 4+ *He — "Be4+y (@ = 1.59 MeV), (13.4)

The "Be does not last long, but produces two e particles, using either Chain IT

"Be+e~ — "Li+ e (1.3.5)
Li+p — *He+ ‘He, (1.3.6)
or Chain ITT
"Be+p — "B+ (LA7)
"B — "Be+et +u (1.3.8)
"Be — *He + ‘He, (1.3.9)

where the *Be iz a narrow resonance at 92 ke'V with width 6.8 eV. Resonances
will be characterized in detail in Chapter 3: they are long-lived combinations of
the reacting nuclel that are produced in specific clrcumstances. This particular
"Be resonance will appear again later in this chapter when we discuss the triple-e
process.

Figure 1.8 illustrates the three branches of the pp chain, inwhich the total energy
released Is the same (260.73 MeV). However, the energy carried by the neutrines is
lost to the star since neutrinos have a negligible probability for subsequent colli-
slons. The energy retained in the star, Q.. Iz 26.20 MeV for Chaln I, 25.66 MeV
for Chain I0, and 19.17 MeV for Chain I This is the energy that is responsible
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extrapolations from the experimental energies. The curve iz an E1 direct capture model
combinsd with an M1 rezonance in a hybrid R-mattix treatment, fitted to the Filippons
data.

for heating the star, and hence also its emission of light. It also, for long while,
prevents amy further gravitational collapse.

Many of these reactions have been measured in the laboratory, all the way
down to energies relevant for the stellar environment (& == 0.1 MaV) An ex-
ample is shown in Fig. 1 4 for ‘He(*He, )" Be: cross sections decreasing exponen-
tially at small energies are shown In the upper half and S-factors, nearly constant
with energy, are shown in the lower half. As mentioned before, the cross section
for fusions of charged particles iz strongly dependent on energy because of the
Coulornb barrier. Most of the energy dependence is given by the e =™ /£ factor
in BEq.(1.1.4), which will be derived In Chapter 7.

For the "Be(p,7)"B reaction, the S-factor is only constant away from the 17 res-
onance at 940 ke that Is prominent In Fig. 1.9, Reaction theory will be needed to
describe how these resonances are superimposed upen the smoother non-resonant
background cross sections. In addition, different data sets shown in Fig. 1.9 have
different normalizations at low energies, where the measurement is hardest.

Both reactions, *He{ *He,v)"Be and TBeILp,ferSB, are not important for the an-
argy production of a star However they are connected to the amount of neutrines
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Fig 1.10. Diagram showing the relevant states in 12 C for the triple-a reaction.

emitted from the star and are very Important contributions to the selar neutrine
experiments [3].

1.3.2 Triple-o reaction

Az mentioned earlisr, there are no stable nuclel with A4 = 5% or 8 nucleons. We
saw that the Big Bang production of %7Li iz very low, and so it is difficult to
produce miclel of mass A = 8in stars. There are many o particles, but they do not
formn another binary bound state with themselves, with protons, or with neutrons.
Fortunately, the narrow low-lying resonance in *Be = a4 o does trap therm together
in pairs with some smmall probability, and this probability is large encugh for a third
e particle to collide with the resonance pair to form a wiple-o composite. This
composite is an excited state In 122 and can aither decay back to 3o, or, with a
small branching ratio, dacay to lower-energy bound states in 1%C by -y emission
and et e~ production.

The non-resonant direct triple-o reaction deoes net produce encugh carbon to
explain the observed abundance. The key point is a narrow 0% resonance in the
"Be + o ='%C* systemn that enhances the triple-er fusion reaction. This is shown
in Fig. 1.10. This resonance iz called the Heyle resonance, after the person who
predicted it in 1954 [4] on the basls that this was the only way to produce the
measured quantities of 12Cinthe Universe. The Hoyle resonance was subsequently
found by experiments, at 287 ke'V above the 3o breakup threshold, with a narrow
width of 8.3 eV [5]. The decay of the Hoyle resonance is via -y emission to the 2+
excited state of ¥ C at 444 MeV, or via direct et e~ decay to the 07 ground state.
We will see in Chapter 3 that -y-decays cannet directly couple two 0¥ states.

The equilibrium population of the 2o ="Be resonance can be determined by
a Baha equation, like Bg. (1.2.2), where the numerator in the exponential is now
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Fig 1.11. The CMO cycle also conwerts four protons inte one o particle, while the initial
1232 5 a catalyst that iz regenerated at the end of the cycle.

the resonance energy of 92 keV. When the temperature ¥y = 0.3 and the den-
sity o~ 10° giem®, as typical for He burning, then the resonance population is
N{®Be)/N{a) ~ 10717 This then enables ®Be + & —2C reactions, each of
which releases an energy € = 7.27 MeV. The net result is 3o —1%C, the triple-o
raction. Statistical equilibrinm will be discussed in detall in Chapter 12

Strongly connacted to the triple-e reaction is the 12C{ay, ¥)® 0. The rate of this
rzaction, relative to the Se capture, determines the post-He burning CV0 ratie,
which, in turn, affects the abundances ofheavier elements produced in subsequent
phases. At present, the C/0 ratio Iz believed to play a crucial role in the last phases
of a massive star. In particnlar, whether the final remmant following a supernova
explosion is a neutron star or a black hole is affected by this ratio [6]. Because
the 3o reaction is comparatively well known, the ¥ C(a,¥)1° O reaction is still the
most important source of uncertainty in the C/0 ratio.

1.3.3 ONO cycles

In some stars there will be small fractions of carbon nuclel, either from the 3o
reaction or from the remnants of earlier stars that have completed their evolution-
ary cycle. If these new stars are heavy enough (M > 1.5 Ag) then the internal
ternperature Iz high encugh (T, == 0.03) that there Iz another cycle that burns hy-
drogen into helium, but proceseds at a faster rate. This is the CNO cycle lustrated
in Fig. 1.11, which uses the initial carbon as a catalyst: It is not consumed, but is
regenerated at the end of the cycle which proceeds as

Y (py) PN (et ) PC (poy) N (py) PO (e, ) PN (p,a) TEC

The initial Coulommnb barrier in the p+*C reaction is higher than in the reactions
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of the pp chain but, if the temperature iz high enough, thiz chain is faster because
it does not imvelve the very slow p4p fusion reaction (1.3.1). The speed of the
CNO cyele Is still limited by weak interactions, namely a 10 mimute lifetime for
the §-decay of ¥*N, and 2 minutes for 0. The total energy released in one CNO
cycle Is the same (2673 MeV) as in the pp chaln, if the energy taken by escaping
neutrines iz included.

The cross sections (or rather the S-factors) needed in the CNO cyele have to be
extrapolated to low energies from those energles where measurements are possible.
For the (p,y) reactions on 12 and 13C, Fig. 1.12 shows that the S-factor extrapola-
tion should be straightforward. For the ¥N{p,1)1% O reaction in Fig. 1.13, however,
there iz a prominent resonancs at 278 ke'V that makes the extrapelation non-trivial
In this cage, better results should be expected from a model that iz fitted to the
rzsonance and the measured data above the resonance.

The basic CNO cycle returns to s starting point with the proton capture reaction
via the production of a *°0 compound nucleus in an excited state (represented by
150#), which subsaquently decays to 12C + oz

PN+p 10" - BCp + e, (1.3.10)

By this reaction, ¥ C is regenerated at the end of the cycle. Occasionally, however,
the excited state 1°C* will decay by -y emission. This is when 1°0, one of the most
irportant nuclei for later crganic life, is finally formed. This *O may capture
another proton, leading to the additional bi-cycle loop shown in Fig. L.14.

The 1*Nip,7)'®C reaction mechanism is influenced even at low astrophysical
anergies by resonances, especially by the low energy tail of the 17 resonance at
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lE,l’?O and l’?F

338 keV shown In Fig. 1 3.3 We will sea that theoretical models are essential hera
to determnine how the sevearal resonances combine with e#ach other, and also with
the non-resonant capture that forms a constant background.

Additional cycles may also occowr when a (p,y) reaction on 170 competes with
the (p,e) reaction shown in Fig. 1.14. This leads to a new cycle Invelving 1BE and
B0 (not shown here), which after a (p.ce) reaction, returns to BNinFig. 1.11 and
aventually regenerates 12C for continuad operation of the CNO cycles.

Eventually ne new miclear reactions are able to produce encugh energy to stall
further gravitational collapse. In light stars, less than about 8 selar masses, the star
gradually contracts into a dwarf star. Outer layers of the star are shed off while the
core contimies to contract under gravity. If the remaining core mass is less than 1.4
solar masses, then it will compress to electron-degenerate matter, forming a white
dwrart.

1.4 Heavy stars

In heavy stars (more than & Mg), all of the above pp, triple-o and CNO cycles
occur in early evolutionary stages. These cycles produce residues of carbon and
oxygen as before, but now there 1s sufficlent gravitational pressure to compress and
heat these residues so that firther transmntation reactions may cceur: the average
therrnal energy is sufficlent to overcome the Coulomb barriers between the reacting
miclel In this case, some reaction chains occur which do net eventnally cycle back
to 1¥C, initiating the production of heavier elements.

In this section, we will discuss the main processes for heavy element produc-
tion. In contrast to the production of light elements, here the number of reactions
Imrvolved is very large and one can ne longer enumerate specific reactions. Instead,
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Fig 1.15. Lavyers in ared giant star before exploding in a supernova. Figure courtesy of
Jon Whiting.

we will mention the main mechanisms and the astrophysical sites in which these
are most likely to occur. Sporadically, we will provide specific examplas.

14.1 ee-burning

Subsequent reactions with o particles, for example, produce heavier nuclel with
N and Z both even, namely 0, ®'Na, #Mg up to ¥Si, which is the dominant
residue (or ‘ash') of the process. These reactions only occur when the temperature
iz high enough; the Coulomb barriars invelved are large because of the increased
charge products &3 Z;. Some neutrons are also produced by (o,n) reactions, giving
tse to nuclel with masses that are not mnltiples of four.

Stars go through a sequence of carbon, oxygen, neon burning and so on, as
the temperature Increases with progressively more gravitational contraction. We
see from Fig. 1.1, however, that less and less nuclear energy iz released in these
successive stages, sothere 15 diminishing return of energy in thiz advanced burning,
and the stages pass progressively more quickly. Stars with these reactions, such as
rad glants in advanced stages of evolution, are therefore leass luminous. A diagram
of the composition of a red giant is given in Fig.1.15. Bventually, muclel near **Fe
are produced (at the core of the massive star), and then no new nuclear reactions are
able to produce encugh energy to stall further gravitational collapse. This results in
a rebound explosion where a new sequence of reactions can oceur, to be discussed
in Section 1.5.
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Fig 1.16. Abundances of chemical elements inthe Zun (percentages): obzervation and the
contributions from three important nucleosynthesis processes.

1.4.2 s-process neniron reactions

Exothermic reactions (& > 0) at temperatures just mifficlent to surpass thelr en-
trance Coulomb barriers will never produce alements heavier than %°Fa. BEven at
enargies above all the Coulomb barriers, the genaral decrease of binding seen In
Fig. 1.1 for large A imoplies, via the Saha equation, that the probability of produc-
ing, say, “"*Pb in equilibrium with °Fe, iz extremely low. However, many heavier
elements must be produced somewhere, as we see them in the Sun, according to
the measured solar abundances of Fig. 1.16. There must therefore exist sites in the
Cosmes which have sufficiently high termperature to enable the endothermic reac-
tiens producing heavy elements, and neutrons should primarily drive the process.

In contrast to proton captures, neutron captures are not hindered at very low en-
argies. We will see later that neutron cross sections rize at low energles as 1/ for
relative velocity v, and furthermore that the coefficient of »~! increases for heav-
ler nuclel A sequence of neutron caphire reactions may thus occur at moderate
ternperatires generating nuclel as heavy as Uranium This is what iz referred to as
the s-process, the *g" for slow.

In red glants (Asymptotic Glant Branch stars) during thelr e-burning stages, ad-
ditional neutrons may be produced by {e,n) reactions, for example on ¥ C or **Ne.
These may be captured by sead nuclel in the iron group, and by progresshvely heav-
ler nuecled, but at a rate mmch lower than thelr F-decay rates. The mechanism for
the heavy element production in the s-process proceeds with () on sach stable
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micleus (2, V), producing neutron-rich isotopes W41, W42, ... This gives nuclel
that are a few micleons away from stability, until a radicactive species G-decays
by electron emission to the next element (241, Ng—1) in the Segré chart in an
Izotope with the same mass. This 1s called a Pranching peint. Several branching
point nuclel are identified in Fig. 1.17. New (n,7) captures can then be repeated
on the Izctopes with Z + 1. Through thiz sequence of (n,y) and J-decays, most
stable species can be produced, with cbservable abundance ratios. A diagram il-
lustrating a part of the s-process is shown in Fig.1.17. Bacause the rate of capture
rzactions iz slower than the S-decay rates which bring nuclel back towards stabil-
ity, the s-process proceeds close to the valley of stability in the Segré chart. In
Fig. 1.16 we show the contribution of the s-process to the solar abundances. Ob-
servations of metal-poer stars show that the s-process Iz not universal and depends
strongly on the metalicity of the star. This introduces some uncertainties on the
final abundancies due to the original composition of the star.

An example of an s-process reaction, *¥Cain,y)**Ca, has been measured by
saveral researchers [7], and is shown in Fig. 1.18. We will revisit this capture rate
when we discuss transfer reactions in Chapter 14 because transfer reactions offer
an indirect method for extracting this type of astrophysical information.

1.5 Explosive production mechanisms

The s-process alone can only explain about half of the observed abundances of the
heavy elements. This has lead to a search for astrophyeical sites in the Cosmoes that
are strongly time-varying, and where the equilibrium probabilities are not appli-
cable, enabling an alternate path for the production of heavy elements. The most
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probable explosive scenario contributing to a large portion of the abundancies of
heavy slements iz core-collapse supernovas. In this environment, high tempera-
tures and a large abundance of neutrons enables a progression of capture reactions
axtending up to waninm. This is called the r-process for napid, as opposed to
the s-process which iz slow. The capture reactions, however, do not necessarily
pass through the stable isctopes, but produce many neutron-rich sotopes that are
radicactive, and eventually F-decay into other more stable species well after the
explosion has finished. There are also some nuclai that cannet be produced by ei-
ther the s- or the r-process mechanisms, suggesting the existence of an additional
process which produces the p-nuclei. The Isotopes invelved in the r-process and
the p-process are indicated In the Segré chart, Fig. 1.19.

Although net contributing significantly to the owverall production of elements,
other explosive environments where the proton density is high give rise to another
mechanism, the rp (rapid proten) process. While the s-process proceeds along the
valley of stability, the rp-process goes aleng proton-rich paths above and to the left
of the valley on the Segré chart, as shown In Fig. 1.19.

1.5.1 r-process neniron reactions

It is widely believed that in supernovae, after core collapse, there are abundant neu-
trons produced, at least for a few seconds, leading to rapid capture sequences that
extend the horlzontal Isotopic chains to the right, well beyond the first radicactive
Izotopes (the shaded reglon in Fig. 1.19). Meutrons are progressively captured by
{r,7) reactions until the preduction of extremely neutren rich Isotopes is limited by
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Fg 1.20, Waiting-pointnuclei (black open squarez): nucleal produced in the v-process and
live long enough to be important signatures in the observed abundances of stable elements
[%]. Reprinted with permiszsion from H. Schatz and T Beers, Astre. J 579 (2002) 625

the increased probability of (v.n) photo-disintegration reactions. This probability
Increases as the neutrons becoms less and less bound. The %2+ -y balance peint
betwesen capture and disintegration defines the position of the r-process path on
the Sagré chart, and iz thought to ba betweean the lines shown in Fig. 1.19. Some
of the nuclel that are produced will §-decay to heavier chermical elements (as with
the s-process), giving a new seed nuclens for ancther series of neutron captures.
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Closed-shell nuclel are usually very stable. These shell closures are belisved to
be at the places marked by the vertical lines in Fig. 1.19 at N = B3, 126, and 184,
and here the r-process capture times become comparable to -decay half 1ives. The
rapid process slows down as §-decay wins over neutron capture, and the r-process
path moves closer to the valley of stability. Nuclel where this happens are known as
wiziting points in the r-process. Walting-peoint miclel around N = 128 are depicted
by the open squares in Fig. 1.20.

The micleosynthesis produces heavier isctopes until eventually, in the actinide
region, fission becomes more probable. It Is possible that super-heavy elements
(Z > 114) may also be produced.

The neutron-rich nuclel will eventually experience a ‘freeze-out’ after the neu-
tron flux has passed, and will no longer be replenished but will #-decay toward
stability. This produces an isotopic population progressively drifting from the
neutron-rich side toward the valley of stability. In the Segré chart, this corre-
sponds to a drift diagenally up and to the left from the r-process path. In this
sense, waiting-point nueclei are the progenitors for the production of stable nuclel
of simnilar mass. The relative abundance of each stable izctope Iz approsimately
propertional to the lifetime of itz originating nucleus on the r-process path. Peaks
in the abundance of stable nuclel with A = 80, 130, and 192 arise due to the nen-
tron closad shells at ¥ = 50, 82, and 125 In Fig_ 1.16G we show the contribution
of the r-process to the solar abundances.

In connection to the r-process, we will study later the neutron capture on 4C
at very low ensrgles (Appendix B.2.5). This reaction can have strong implications
for the final abundances produced in the r-process in Type I supernovas. Data
for 14Cin¥)1%C direct measurements and cross section determined indirectly from
Coulomb dissociation! are compared inFig. 1.21. Asseenin Fig. 1.19, meost nuclei
Imvelved In the r-process have not even been observed. Therefore, at present, the
modeling of the r-process relies heavily on theory.

Mumerous F-decay rates are important Inputs tor -process network models. There
are direct methods to measure this, but alternatively one can determine this infor-
mation through charge-exchange reactions. In Fig. 1.22, data for *®*Mi(t,*He) iz
shown as a function of the excitation energy of “*Co[10, 11]. The mechanism for
these reactions will be Introduced in Chapter 4 and a discussion of how to extract
the needed structure information from such data will be addressed in Chapter 14
This particular reaction is also very relevant to the mechanism of the explosions In
suparnovas.

1 4 geperal theory for Coulomb dizsociation will be intmoduced in Chapter # and applications: dizcimzed in
Chapter 14.
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Fig. 1.21. Meutron capture reaction on M C [8]: comparing direct measurements (black
circles) with the (n,7) extracted from Coulomb dizzociation (grey band); for more detail
soc Chapter 14, Reprinted with permizsion from M. C. Zummers and F M. MNunes, Phys
Rev © 78 (2008) 069908, Copyright (2008) by the American Phyzical Society.

1.5.2 The rp-process

The rp-process Is not required to explaln solar abundances but will occur whenever
stellar material rich in hydrogen is suddenly heated to high temperatnres. Main-
saquence stars and red glants will have abundant H and He nuclel evelving ac-
cording to the normal pp or CNO chains, but in some binary systerns, transfers of
mmaterial from the red glant to the smaller partner will lead to new kinds of ther-
momiclear explosive reactions.

The preferred site for the rp-process are binary systems Involving neutron stars.
H there iz H-rich massive transfer from the companien to the neutron star, then
the temperature and density of that material will suddenly increasze as it reaches
the surface of the neutron star. There will be a rapid series of (p,y) and (o,p)
rzactions that would normally be hindered by the Coulomb barriers, and which
will produce a series of proton-rich nuclel up to the A ~ &0 mass reglon. At
each step along this rp-process, the material may either captiure ancther protonina
{p.y) reaction, or walt for §-decay. The captures will lead to new Isotopes until the
proton dripline is reached, or until #-decays become fast enough to compete with
the capture processes.

In addition there are intense X-ray fluxes belng produced, which have bean ob-
sarved. For this reason, these binary systems are called X-ray bursters. With the
highest temperatures, nuclei up to A ~ 100 may be generated. The rp-process
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Fig 1.22. Cross section for the charge exchange reaction 5%Mit,*He) at 115 MeViu az a
function of the energy of the residual nueleus *° Co [10]. Reprinted with permizsion from
AL Cole ef al, Phys, Rew C 74 12006) 034333, Copyright (20063 by the American
Phyrzical Bociety.

becomes progressively hindered by the Coulomb barriers, and remains overall rel-
atively unimportant for the production of nuclel and energy in stars.

A milder version of the rp-process can also oceur In novas, in accreting material
on white dwarfs. However, here, terperatires are not large encugh for the process
to reach the proton dripline.

1.5.3 The pprocess

There are some neutron-deficient Isotopes that cannet be made in the - or 3-
processes, which justified naming an additional process. This process is repre-
sented by the white line in Fig. 1.19. It inveolves a sequence of (), (y.p) and
{y.e) photo-disintegration on previous-generation stable nuclel As it is triggerad
by photons, the process is sometimes called the gamma process.

Cre of the most likely sites for the p-process Is In outer lavers of core-collapse
supernovae, while it heats due to the shock wave passing through. In the p-process,
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all elements are produced, but In much-reduced quantities when compared to those
resulting from the s- and the r-process. In Fig. 1.16 we show the contributions of
the various processes to the abundances in the Sun. It is only for some proton-rich
elernents that the p-process becomes crucial. Also apparent from Fig. 1.16, light
nuclel are net fully accountad for by the s-process.

1.6 Outlook
6.1 Implicatians for nuclear physics

The nuclides produced in the s-process are almoest all long-lived enough to be tar-
gets In laboratory reaction measurements, and (n,y) cross sections have been mea-
sured for many of thess. The rp- and r-process miclel, by contrast, have mnch
shorter 1ifetirnes, and are mmore difficult subjects for laboratory measurements. We
will see that some of thern have sufficient 1ifetimes to be produced in radicactive
beamns, and then used in subsequent secondary reactions to examine thelr prop-
arties. Those with even shorter 1ifetimes can still be produced as final states In
secondary reactions, and some of thelr properties determined. Reaction theory will
be nesded to analyze the secondary reactions, and connect those measurements
to the reaction rates relevant in astrophysical environments. In the next chapter,
we examine miclear reactions and see what properties of nuclel can be measured,
and then in later chapters develop scattering theory so that we have a theoretical
framework to describe these miclear reactions. BEwventnally, in later chapters, we
will close the circle by applving the various reaction theories to many of the astro-
phiysical reactions we introduced in this chapter.

1.6.2 Nuclear asiraphysics: an apen fleld

Although the rest of the book focuses on the description of nuclear reactions, these
contribute In multiple ways to many open questions in astrophysics. In all the stan-
dard processes producing the elements described in this chapter, there are abun-
dance mismatches that need better constraints from nuclear physics, In partion-
lar, nuclear structure and nueclear reaction input. One of the greatest challenges
has been blending miclear physics input with astrophysics meodeling in a way that
meaningtul constraints on the parameters can be made. In present-day model-
ing, thera are specific conditions that need to be intreduced artificially and are yat
awaiting a better understanding. In some cases, thers Is uncertainty on the nucle-
osynthesis path (as in the r-process); in others, there Is unceartainty on the endpeint
(a5 in the weak s-process). Perhaps even more exciting are the new emerging 1deas
that have not been discussed here. There is the weak s-process introduced earlier to
account for the light nuclel, but more recently the Light Blement Primary Process
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(LEPF) was addad to the list, to explain the early galactic adundances and, maybe
related to it, the neutrine p-process, thought to cccur In all core-collapss supet-
novas, and a possible site for the production of Sr and other elements beyond Fe In
very early stages of galactic evolution. Studies alming for a better understanding
of the Universe will continue for decades to come. For more detailed information
on astropliysics and the topics covered in this chapter we refer to textbooks such
ag Clayton [12], Rolfs and Rodney [13], Arnett [14], Pagel [15], Iiadiz [16] and
Beannatt [17].
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Reactions of nuclel

I waz taught that the way of progress was neither swift nor cazy.
Marie Curie

In order to understand nuclear reactions, e have first in Section 2.1 to name the
arrangement of nucleons in a muclens in terms of the quantum-mechanical state
of a nucleus, and then describe the different ways in which these nucleons may be
rrarranged during nuclear reactions. Reactions which procesd quickly, and thus
called direct reactions, are distinguished in Section 2.2 from the comparatively
slow reactions that also occur, which are called compound nucleus reactions.
Almost all reactions involve the collizion of two miclei, and Section 2.3 shows
how the conservations of mass, energy and momentmm may be described in either
non-relativistic or relativistic kinernatics. Section 2.4 describes how the rates of
nuclear reactions are measured in terms of cross sections, which have units of
area. We show how thess cross sections are different in the laboratory and center-
of-mass coordinate frames of refarence, then in the final subsection 2.4.4 how the
cross sections may be determined from the wave functions that are solutions of a
Schrodinger equation for the palr of reacting nuclel

2.1 Kinds of states and reactions
2.1.1 States of nuclei

Muclel are aggregations of Z protons and N neutrons in a particular configuration
or state described by a wave function ¢ determined from quantum mechanics, given
the strong and electromagnetic potentials ¥ between the 4 = N + Z constitnent
micleons. A state Is called bound If energy iz needed to remove one or more nu-
cleons to large distances. A bound state hag thus a total binding energy B(4, )
which Iz positive, and therefore has a negative eigenenergy & = —B(A4, Z) for
the Hamiltonlan in the many-body Schridingar equation. All the bound states are

28
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Fig 2.1. Energylevels of the ¥ Coucleusup to 10 Me'V, drawn at their excitati on energy ¢,
and labelad by their spin and parity. They are bound up to 4.94 MeV, after which nentrons
may have pozitive energy and cxcape.

discrete, which means that they can be counted with integers &, Bach bound state
bhag a specific spin I measired in units of A, parity m = £1, and eigenenergy
By < 0, so the Schrodinger equation for an izelated nucleus is

[ + Vgs = Ebets, 2.1.1)

where 7' is the kinetic enargy operator given in Chapter 5. The individual nucleons
(neutrons and protens) all have spin % which means that even-A mclel have inte-
ger spins, and odd- A nuclel have half-integer spin values. The parity of a state Is
the factor £1 by which its wave function changes on the spatial reflection r — —r.
Muclear and Coulomb forces do neot change parities, so nuclear states may be la-
belad according to their parity.

The state of lowest energy iz called the grownd state by, and we measiure ex
citation energles above the ground state as ¢ = Ap — FAq, shown in Fig 2.1 for
1#C. Muclei, if left to themsealves, will generally decay to their ground states by -y
emission or electron capture: the exceptions are called isemers, which are nuclelin
encited states with long lifetimes becanuse for some individual reason the decays are
hindered. All non-isomeric nuclel In laboratory conditions will be in their ground
states, as they will also be in stars when the temperatures T° satisfy kT < 6.

Unbound states of nuclel include resomances, as well as the smooth background
between resonances called the xnom-resenamt comtinyym. Strictly speaking, the
Schrédingsr equation has elgensolutions at every continmious (unbound) positive
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N Py
b e - Eeaction region
C )/Pc
Fg 2.2 Zcattering angle in the B(A,C/D reaction showing the incoming and outgeing

momenta. In the cenfer-of-mass frame, the two # angles are equal, and are called the
center-of-mass scattering argle f.q.

anergy, but traditionally only the resonances are listed as ‘states” of a nucleus In
level diagrams. Bach resonance has a width I, measured in MeV as (in most cases)
the full width at half maximnm of the resonance peak Resonances can interfere
with each other, and overlap each cther at higher energies where the widths in-
crease, and thus give more complicated patterns In experiments. A resonance can
be regarded as a composite systern that, because of its energy spread, lasts ac-
cording to the uncertainty principle in propertion to e ™7 for a time duration of
7 o /T called the lifetime. The half-life, after which half the miclel will have
decayed, is £y, = (In 2)7. When the corresponding decay channels are inclnded
in the picture, one can think of all radicactive nuclel as resonant states.

2.1.2 Kinds of reactions

In reactions of type BIA.C)D, the nuclel A and B usually start in thelr ground
states. If they remain in thelr initial states, we have elastic scattering, written as
B(AA)JE. The directions of motions of the two muclal will have changed by the
scattering angle ¢ shown in Fig 2.2, while the relative kinetic energy of thelr
motion & (defined on page 35) will remain unchangead.

If one or both of the incident nuclel A, B gets changed to an excited state during
the reaction, thizs is called felastic scattering. Excited states are often denoted by a
¥ mperscript, so BlAAJBY Iz the reaction where B finishes In some exclited state 5,
gay. The relative kinetic energy after the reaction will be decreased by the amount
g of energy that has gone into exciting the miclens B, and the &-value will be
) = —eg Tor this endothermic reaction.

Perhaps during the reaction a proton or a neutron is moved from one nucleus to
another. This i1z called a twawsfer reaction. If the nuclens A can be regarded as a
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core C plus a neutron n, say, then a transfer reaction can be
(A=C+4n) +B — C+ (0 = B4n), (2.1.2)

forming the new residual micleus D that is composed of the original B together
with the nentron bound to it. The final  and I may possibly be in excited states.
H the (positive) separation energy of the neutron in Als 54, and in D iz Sp, then
the §)-value satishes Sp = 54 4 &, and the final kinetic energy will be Increased
by this &, which may be positive or nagative. The reaction d{d,n)*He in Fig. 1.6,
from primerdial micleosynthesis, is a transfer reaction where a proton is transferred
from one deuteron to the other, the first being reduced to a neutron, and the sacond
becoming d+p = *He with a energy release of @ = 3.27 MeV because the initial
binding energy is 222 MeV and the final is 5.40 MeV.

Sometimes the two incident miclel will capture each other, fthe incident kinetic
anergy £ Is not too large. To form a composite state that lasts long enough to stop
Immediate escape back to the incident A4B configuration, either some energy has
to be released by direct particls emission, or some resonance has to be excited with
i long-encugh lifetime, or both. The most frequent kind of direct emiszsion is that
of «y-rays, as in the primeval reactions d(p,¥)*He or *Ha{e,7)"Be, both occurring
without the assistance of resonances (see Chapter 1). Heavier nuclel than these
have many more resonances, so caphires of neutrons or protons on a larger nucleus
iz mest likely to procesd first by exciting a narrow resonance, which may, after
some average time 7, decay by emission of photons, neutrons, or other particles
U there iz enough energy. When direct -y processes dominate, the process 1s often
called a radiative capture reaction A 4+ B — C + -y, and the reverse process,
C+y — A+B, Iscalled photo-disintegration. When resonance caphire dominates,
the process is often called a fusion reaction A + B — C*, as one kind of the
compound ruclews raactions to be discussed in the next section.

Finally, there may be breakup reactions where, say, one participant B 1z broken
into two or more fragments C and D that may be detected separately. We would
write this reaction as A(E,C4+D)A. The two parts C and D are sometimes together
regarded as an excited state of B, especially if that excited state can be counted as
a particular resonance.

2.2 Time and energy scales

In the above description of kinds of reactions, we mentioned a variety of direct,
rsonant, and compound-nucleus reactions. Thess will be characterized also by
the ranges of time and energy that are involved.

Acdirect veaction Iz one that proceeds the most quickly, and has rates (measurad
a5 cross sections) that vary most smeothly with incident kinetic energy. Trans-



32 Reactions of nuclel

fer and breakup reactions are generally direct reactions of thiz kind. Sometimes
rractions with resomarces have peaks in the way the cross sections vary with an-
argy. These are measured by the full widths at half maxiomm of these peaks I',
and narrower resonances last for longer times in inverse propeortion to thelr width
Finally, there are extremely narrow resonances from unbound compeound nucleus
states that, by the time they decay, will have lost practically all information abeout
the direction of the Incident micle, and will therefore decay Izctropically.

2.2.1 Direct reactions

The fastest reactions only invelve very few nucleons on the surface of the nucleus,
or only the nucleus as a collacthve whole These are called direct reactions, and are
more likely to cocur at high incident energies becanse then the reaction is typically
finished more quickly and fewer internal collisions are possible. In these fast re-
actions, the directions of the final nuclel are mmech mere influenced by the Initial
direction, and will typically have large cross sections at small #om: large reaction
rates in the direction of the incoming miclel (see Fig. 14.3 for example).

Cuantum mechanically, direct reactions are much mere often modeled as 2 one-
step transition between the initlal and final scattering states. Most of the Big Bang
reactions can be well described as one-step reactions, for which, we will see In
Chapter 14, the distorted wave Born approximation (DWEBA) will prove very use-
ful. Transfer processes such as A(d,p)B stripping reactions are usually modeled by
the D'WEBA, assuming a direct-reaction mechanism. Of course, production of the
Atd compound nucleus systern iz still possible at lower energles, but the decay of
the compound nucleus gives Isotropic angular distributions, which can be distin-
guished from the forward-peaked (d,p) cross sections, and subtracted i necessary.

One-step theorles may be Improved by including twe and higher-order steps,
ag In a perturbation series. If some of the interaction potentials are strong, how-
aver, thiz series may notconverge, and couplad-channels methods mnst be used, as
discussed in Chapters ¢ and 14.

2.2.2 Resonance reactions

We have seen many resonances in Chapter 1 as peaks in cross sections when plot-
ted az functions of energy. From the theoretical peint of view, resonances are
longer-lived confignrations of nucleons, and may be produced by many different
mechanizms, hence having wide-ranging lifetirmes. The simplest resonances are
those that occur in alastic scattering, bacause of the nuclear attractive force com-
bining with a Coulemb and/or centrifugal barrier to keep the colliding miclel A and
B together for some time before escaping again. For example, both neutrons and
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protons form resonances when Interacting with an o particle, as will be examined
in more detall in Chapters 3 and 1 0. These elastic resonances are called shape ras-
crances because they arize from the shape of the effective elastic barrier. They do
not last for very long, especially in light nuclel, so have relatively large widths T

Slightly more complicated resonances may arise from multistep processes, for
which we see in Chapter ¢ that coupled-channels medels must be used. When only
afew of the nucleons are irmvolved, these are called doorway resonances, since they
are near the entrance channel, but may lead to more complicated decay patterns.
They will typically be longer lived than shape resonances, and will have smmaller
widths I".

At higher incident energies, some strongly collective resonances are found to
occur. These are called giant resonances. In glant dipole resonances, for example,
all the nentrons oscillate collactively against all the protons, and in giant monopole
respnances there are ‘breathing mede’ oscillations, where the whele nuclens gats
alternately larger and smaller In a spherically symmetric manner.

2.2.3 Componund nuclens reactions

The mest complicated resonances are the compound ruclews vesenances. These
irrvolve all the A+B mucleons, live the longest, and so have the narrowast I values.
Mo practical theory can pradict all these resonances, but their widths may be deter-
mined experimentally from fitting to the results of experiments with high energy
r2splution.

Crne way of viewing compound micleus reactions iz to consider all the possible
Interactions between the nucleons of two nuclel when they are close together for a
long time. There will be so many nucleon-nucleon scatterings in quick succession
that the initial kinetic energy will be dispersed among all the nucleons. Bventually,
all of that kinetic energy will be shared evenly between all nucleons of the fused,
corpound system. The energy will have been dissipated in a largely statistical
manner, so that there iz only a very small probability that any one nucleon will gain
enough individual energy to escape from the compound nuclear systemn. This gives
1 long lifetime 7 to the compound nuclens. Strictly speaking, it iz still unbound
and a rescnance, because it Is still possible for a nucleon to escape, but the rate of
thiz, 1 /7, will be very small, and hence its resonance width I' = /7 will also be
very small.

The concept of a compound nucleus was first given by Niels Beohr, who for-
rmlated the independence hypothesis that the later decays are Independent of the
details of the Initial channel. This means that the same compound miclens may be
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Fig 2.3 Reaction products from two compound nucleus reactions showing that the pro-
duction rates for the exit channel are independent of the entrance channel (cross ssction
data from Ghezhal [1]).

formoed in one of several ways, for example

o 4+ 01— ST

and  p4 ¥Cu — I, (22.1)

and the products from the two reactions should be simmilar. This iz dlustrated in
Fig. 2.3 for several reactions producing "*Cu, **Zn and "*Zn, where the produc-
tion rates are the same, whether generated by incident protons on **Cu, or by o
particles on "°Mi, provided the enargy scales are shifted so that the compound nu-
claus excitation energies are the same.

2.3 Collisions

To medel the collisions of two nuclal, even before we consider what happens while
they are close, we need to accurately specify thelr initial and final energies and
momenta, and how these are related by conservation laws. Wea consider first non-
relativistic collisions, and later come back to the relativistic account.
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2.3.1 Non-relativicfic linematics

Consider now the collision of two nuclel A, B of masses 14 and m g respectively.
We first use a coordinate system fixed in the laboratory (or the star) wherethevhave
individual veloeities v 4 and v g, from which we havatheir energies as Ay = %mwf

iz=A, B), and momenta p; = 1.

Pwo-body kinematics

Suppose the two nuclel have Instantaneous positions r; (§ = A or B) In some fixed
frame of reference. We can best describe the dynamics in terms of the two new
coordinates: the center-of-mass position S and the relative vector R, defined as

S = (mara +mpre)/map
R=r4—rg (23.1)
where W g4g = niyg + mpg. The total kinetic ensrgy Is
1 2 1 z
Ehjt = Emﬂﬁ}l + Emg’-‘.-'g (?..3.?.}
and, using Bq. (2.3.1) solved for the r; In terms of S and R, this may be rewritten
as

By = 3maps® + Juk, (23.3)

where the speeds & = |S| and B = |R| are the magnitudes of the S and R veleci-
ties respectively, and we have defined

H=mgmg/mag. (2.3.4)
The total energy can therefore be seen as a sum of the energy of motion of the
center-of-mass (%m 45SY), and the energy of relative motion

E=1unt (2.3.5)

The mass parameter i associated with the relative motion 1z called the reduced
muxss. The ‘relative energy’ £ will be used extensively in scattering theory.

An Important case is that of laboratory experiments, when particle A iz incldent
with energy A4 on a stationary rmucleus B that 1s a target, dlustrated in Fig. 2.4(a).
In thiscase § = my fmagvy, and

E=mgfmag g = Juvl, (2.3.6)

and the remaining energy B — B = g map Ba Iz that from the speed S of the
center-of-mass of the A+B system.
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Fig 24 Laboratory (a) and center-of-mass (h) velocities before the collision, when B is
a stationary target. Part (2} zshows the way the laboratory welocity v may be decompozed
into a welocity in the cm. frame v' and the welocity of that frame 8 azs v = v' + 5. The

azirruthal angles ¢ are out of the page, and are not changed by the changes of reference
frame.

The cemter-of-mass coordinate system

H all the forces acting in the reaction are only between the miclel and are not
axternally imposed, then it iz most useful to change the reference frame to one In
which the center-of-mass of A and B is at rest. This iz called the center-of-mass
(c.m.) frame. When the forces between A and B depend only on R and net at all
on 5, then the velocity S is constant, and the c.m frame remaing an inertial frame.
We denote velocities in the center-of-mmass frame by primes.

We may set the origin of the center-of-rnass reference frame at the peint 8, so the
frarne is defined by & = S’ = 0 as shown in Fig. 2.4(b). The unprimed laboratery
velocities and primed center-of-mass velocities are related in general by

v=v'4+8
o vV=v-—8§, (23.7)

the vector addition lnstrated in Fig. 2 4dic).

Conserwation laws for collisions

In a reaction B{A, D that leads to final muclei T and I3, conservation laws limit the
range of the energies and outgeing angles of nuclei C and D. Mon-relativistically,
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we have separate meass, energy and momentum conservations:?

mMag+mg = mo+mpo, (?..3.3}
@+ Eq+ Eg = Ec+ Bp, (2.3.9)
P4 +Ps = P +Po; (2.3.10)

respectively, where & (as before) is the internal energy released in the reaction.
These laws apply in both the laboratory and (for primed quantities) in the center-
of-mass coordinate framas.

Labavatory and certer-of-mass scattering angles

Laboratory experiments may measure scattering angles, commonly when B 1z a
stationary target. Most theorles, however, predict cross sections as functions of
center-of-mass angles o, which are different from the laboratory angles &4
because the center-of-rass frame iz now moving in the laboratory with constant

velocity
= 4 (2311
Mag

whenrg = Oas in Fig. 2.4(a).
Consider some outgoing particle C. If it has laboratory velocity v, then its
velocity in the c.m. frame, by Bq. (2.3.7), Is

vh =ve— 8. (2.3.12)

Lat us measura the angles & of C from the Incident beamn direction: the direction
of 5. Then the lateral and paralle]l components of Bg. (2.3.12), according to the
triangle of Fig. 2.4(c), give
’u‘.-"rGS.'Hllf?c.m = ’u‘.-'GS.']Il Elab
._‘-":'-I—*t.'bcosﬁ'.:m = U 008 Hah
Pom = Plab (2.3.13)

from which we conclude that

. .
Wiee 811 By 8nf.p,

fe1 flap = —

= 2314
S+ v cos fom 0+ 008 Bom ¢ )

where we define p = & [, To determine pwe need to use the conservation laws.
H £ is the relative energy in the Incident channel, then in the exit channel we have

1 Ther arz alzo comervation laws for charge, angular momennum, baryon mumber, e, but these aw notneeded
her.
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in the c.m. frame

1 1
Q+E = B+ Bp = Emcﬁ’é + Empﬂ%

0 = mevh +mpvhy. (2.3.15)

Eliminating v from these equations, we find @ + £ = 72 (mc + mplv .
Combining this with Bqs. (2.3.9) and (2.3.11) we gat
i
mare B H
p=+
mgmp & + &

(2.3.16)

In elastic scattering A=C, B=D and ¢=0, so we have simply o = w4 fmg. To find
the c.mm. angles in terms of the laboratory angles, Bq. (2.3.14) can be rearranged as
a quadratic in sin foy,.

In the remainder of this book we will drop the subscript cm and the primes, and

use § to directly refer to the scattering angles in the center-of-mass frame

2.3.2 Relaive and center-of-mass wave frnctions

The above transformations from space-fixed to center-of-mass coordinates have
their counterpart in quanturn mechanics. The Schrédinger equation for the motion
of two particles A and B with total energy By and some potential Vira—rg) that
acts between them® is

R R
|:— Q'J‘TEA \Tf'm - %E?rg + VI:I'A—['B:J — Ebgt ‘I"I:['A,IZ'B"J =10 (?..3.17}

Using the same coordinate transformations that led to Bq. (2.3.3), but without as-
suming that B is at rest, the kinetic energy terms in this equation may be rewritten
ag a sum of operators using center-of-rmass and relative coordinates. We may also
use these coordinates for the wave function, vielding

R . RE_,
— Ve — —YVE + VR - & TS, R) =0, 2318
|: 7 ] 2 R I: :J b\:it:| I: 1 ) I:. ;l

We now look for separable solutions, of the form T(8, R) = ©(S)¢¥(R). Substi-
tuting this in Bq. (2.3.18), cne can show that it can be solved If we have solutions

? Mote aleo that they may sometimes be named “c.m s-attering angles', just as the velocities v am sometimes
called ‘c.m. velocities'. Howewver, the angles, velocities and moments ik (pot o) the centerof-mes frane ae
mtended. Firtharmare, p'y and ply am zometimes called “wlative momenta’, but this iz misleading zince they
are ot mlative to the other particle, only to the centerof-mass frame. Since pfy, = —pf. they are equal and
opposite momenta in the c.m. frame.

& W ammume that (R} — 0 when & — oo, =0 the ot energy 5oy iz alzo the total binebic enargy of the
midal particles given by Eqge. (2.3.2) and (2.3.3).
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for the two separate equations
hE
dmap

VED(S) = (Bia—E) T(S) (2.3.19)

I
and [—;—#Tf’ﬁ-l—V(R)]@ﬂ'(R) = E4y(R), (2.3.20)

for some separation constant &, We dentity this constant by noting that Eq. (2.3.19)
has plane wave sclutions like ©(S) = Aexp(iK - 8) for the free motion of the
center-of-mass of the whole system, for any wavenumbers K satisfying by — B =
REKE f2mag. The £ st therefore be the same relative energy defined in Bg. (2.3.5)
earlier, so Bq. (2.3.20) must be the (non-trivial) Schrédinger equation that defines
the real physics of the relative motion.

It is Interesting and very useful to note that & 15 equal to the kinetic energy of
a fictitions particle travelling with the relative veloclty v = vy — v, and whoss
mmass is the reduced mass . We can thus think of Bq. (2.3.20) as representing
the collizion of a particle of mass g, initial velocity v, momentim p = v, and
kinetic energy & = %,wa.'z with a fixed scattering peint atthe center of the potential
anergy V(R). Then R is the vector from the origin of the scattering potential to
the position of the fictifious particle of mass . This usefully reduces a two-body
scattering problem tothe problem of scattering a single particle on a potential fixed
arcund the origin.

When the potential is zero, Eq. (2.3.20) has plane wave solutions like ¢(R) =
Aexplik - R) for wave vector k = p/f whose magnitnde 1s related to the energy
by £ = A%%%/2u. Interms of k, the relative velocity is v = fk/u. When the
potential does not depend on the miclear states, we have elastic scattering, where
k| iz unchanged from the initial to the final state, changing only itz direction. In
general, we will s2e how the potential may be more complicated and change A to
Dand B te C, to preduce the BiA,C)D reaction.

2.3.3 Relativictic kinemaics

At medinm and higher energieas — above one or two hundred MeV per micleon —we
chould take Into account that, according to Special Relativity, the kinetic energy 1z
not exactly I = %mﬂz becanse thers are corrections that become significant as #
approaches the speed of light ¢ In this subssction we just focus on establishing
the correct relations betweaen velocities, momenta and energy, but still keep a non-
telativistic Schrédinger equation for deterrnining the dynamics of the reactions.
That iz, we only use what is called relativistic kinematics.
We employ a 4-vector notation where the meomentum 4-vector is

P =moy(v)ie v) = (mep) = (£/cp) (2.321)
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Zef — p® = mic?, for a particle of rest mass myy moving in

a given frame with velocity v, momentum p and total energy £ = mae® 4+ 7" for
kinetic energy T

When there are several particles, we cannot define a center-of-mass frame using
Eq. (23.1) because the mass coefficlents are frame dependent. What we can do is
define a cemter-of-momentum (COM) frame? in which the summed 4-momentum
of all the particles is purely time-like, with the spatial part being zero, > ,p; = 0O
(Rindler [2, 5307, Goldstein [3, §7.71). In this frame the summed 4-momentum for
two particles is

with Imvariant P% = m

Py = ((ma4 +mz)opa +p5),
= ((m4 +mp)g0) (2.3.22)

in the COM frame, with invariant
FE, = (ma +mp)ic® = M*F (2.3.23)

to define an imvariant A7, interpreted as the mass of the whole system in the COM
frame. We evaluate M by considering the entrance A+B channel in the laboratory
frame, where we speciy that A has kinetic energy Ty, B Iz at rest, and that they
have rest masses figq and mpp. Initially, therefore, £y = mpact + T and
Eg = mpge®. The invariant iz thus

M = (ma +mop)e® — pY = (mog + o) + 2mapTy. (2.3.24)

In the COM frame, Py has a first component of Ac, whereas In any other frame
that compenant will be increased to Mwye, for ¥ = 1/4/1 — (/e)® corresponding
to the relative motion of that frame with respect to the COM frame. Consider
therefore the laboratory frame, so -y corresponds to the motion Yooy, of the COM
framne. In the laboratory frame the first component is (ma + fop)ec = (Moa +

fgglc+ Ty/c, 5o
_ (mog+mople+Tafe  (Mog +mmogle? + Ty

= L2325
¥ (¥oom) Mc Me? (2323)
We may eliminate T4 using Bq. (2.3.24), giving
MEpmio —mi,
U = . 237263
’:f'( mm:] Sriom M i )

We use this -y value to find the individual energies of A and B in the COM frame.
Particle B at rest in the laboratory had a total energy of £ = mpget, which now
transforms to
METLmi_ i
EE™ = Y(voem) B = ?ﬂ? UL (2.327)

4 Thiz reference fmme iz not the zame a= the center-of-mass (cm.) frame)
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In the COM frame the energies sum to A%, 5o

MP fml, — ml
B = Mt EFT = 4 "B 2, (2.328)

The 3-momenta of A and B in the COM frame must be equal and oppeosite. Their
equal magnitunde p may be found from £% = pPc? + mi, ot for either é=A or B. The
wave number for relative moetion, which we will need for later wave equations, can
be evalnated as

_ E _ \'/I:EA )2 - mé}lc"'

&
A He

(2.3.20)

We will also need the Sommerfeld parameter %, which uses the relative velocity
U1 between A and B. This Is most easily found via v = ylv) as

Ty
= 1 2.3.30
’T’("‘-"rel) —— +1, { )
0
Ural '.,.-"’:r'2 -1 EAEBEZ EAEECE
f=—=——— and 5= = (2.3.31)
¢ ¥ fitteal 4

for fine structure constant e = e /fie.

In an exit channel, the variation of the reduced masses of particles C and D will
automatically take into account the §-value by Bqg. (1.1.3). Thelr 4-moementa when
summed will vield the same invariant Me of Bq. (2.3.23). In the COM frame thelr
3-momenta will again sum to zero, so thelr energles may be found by equations
simoilar to (2.3.27, 2.3.28). The wave number for the outgoing relative motion iz
given by an equation of the same form as Bg. (2.3.29). These all reduce to thelr
nen-relativistic limits for 7'y <& g 4 €%, or v <€ ¢. Photons, with zero rest mass,
st always be treated relativistically.

The above equations are sufficlent to define the energles which enter into a quan-
tumn mechanical wave equation, and also the wave numbers which are needed to
define its boundary conditions. This yields total cross sections, whersas we have
net discussed the ralativistic treatment of angles and differantial cross sections: for
thase the reader is referred to Goldstein [3, §7.7]. Total cross sections, as ratios of
flixes, are not changed by Lorentz transformations.

This treatment of relativity iz of course far short of field-theoretic treatments, for
we rather simply use the above energies and wave mumbers In the non-relativistic
Schrédingsr equation. In this way, the theoretical treatment may be at least consis-
tent with the most accurate descriptions of experimental beams and final scatterad
particles.
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2.4 Cross sections

The reaction rates of nuclear reactions are described as cross sections, which are
defined as a ratio of outgoing flux to the ncoming flux of the beam. There are
differential cross sections for outgeing particles to specific angles, as well as inte-
grated cross sections after integrating over all outgoing angles.

2.4.1 Differential crass-sections

The angular distribution of particles scattered by some potential V{R) is usually
described by the differential cross section o8, @) for polar angles & measured from
the beam direction, and azimuthal angle ¢. The number of particles entering a
given detector after a scattering reaction will depend on the solid-angular size of
the detector AD, the nuober v of scattering centers in the target, and on the flux
of the incident beam 7.

The size of a detector iz the solid angle measured in steracdions, abbreviated st
If the area of the detector is E and it is a distance R from the target, then it subtends
asolid angle of AQ = B/R®. If we detect particles coming out in all directions,
then & = 4w R* and A = 4.

The flux of incident particles §; 1s measured as the mimber of particles per second
per unit area. This iz equivalent to the probability density of particles (per unit
volumne) multiplied by the velocity, so, for a2 wave function ¢ and fixed particle
velocity v, the flux 1s the vector

i=vly (24.1)

The velocity, we saw, has magninde v = Ak /i for the relative motion.

We define the differential cross section o(#, ¢) as the mimber of particles N
scattered per unit time, per unit scattering center and per unit Incldent flux, into
a unit solid detection angle. When an incident flux of §; scatters of % scattering
centers into a solid angle AL, the cross section is therefore the coefficient & in the
equation

% =fnAlag. (240

It has units of area per solid angle. The area for nuclear physics cross sections are

sometimes given in units of fm® = 10~*m?, but more often with units of barns

(b), where 1 b = 107%*m® = 100 fm®, or millibarns (mb) where 10 mb = 1 fm?.

Most commenly, the differential cross sections o8, ¢) will be given In units of
s

If we consider just one scattering center 2 = 1, and measure the scatterad angu-
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far fhex in the final state as § 718, @) particles/sec/steradian, then

o(6,8) = @ 243

The total number of elastically scattered particles is found by integrating a8, @)
over all the solid angles of detection

m m
7 =f a8, ) 0 =f f a8, ¢) dep sin #d8, (2.4.4)
dar u] u]

The unit of these angle-lntegrated cross sections Is therefore an area. If a8, @)
wera a constant o for all angles, then we would have og = dmoyg.

The differential cross section Is often written as Edl% to explicitly indicate the
cross section per unit solid angle. This notation gives a more natural expression to
Eq. (244) as, generically,

do

s= | —do. (24.5)
o A2

In thiz book we will write most simply (@, ¢), a function of angle, to dencte

the differential cross section do/d{, and o, without angular argurments, to dencte
angla-integrated cross sections.

2.4.2 Laboratory and center-af-mdass medsires

The total angle-integrated cross sections are the same in the laboratory and center-
of-rnass frames of reference, since they just measure the total mumber of incident
particles that are deflacted by that target. The differential cross sections, however,
are different. I o8, §) Iz the cm cross section, and ayg, (Fan, Plap) the laboratory
cross section as a function of laboratory angles, then integrals over a small solid
angle must therefore be equal:

a(#, @) de sin 046 = Tieb(Aah, Plab) At SN Heapdfal. (24.9)
Using Eqgs. (2.3.13) and (2.3.14), we may darive the relation

(14 5% 4+ 2pces §)3
Tlabl Plab, Plab) = 1+ peosd a8, @) (24.7)

where we use pfrom Bq. (2.3.16).
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2.4.3 Experimental and theavetical crass sections

The cross section 1s an effective meeting point between experiments and theory.
Most often, experimentalists transform their measurements into the cross sections
(8, ¢) definad in the center-of-mass frame, as a function of c.m. angles.®

The tazk of the theorist isthen to predict this c.m. cross section from seme model.
We have a prejudice for models based on goed physical principles that have as few
paramsters as possible, so that they can be reliably fitted to known data, and so that
extrapolations to new energles, as Is often required in astrophysics, become more
accurate. Microscopic theoretical medels are those that start from a Hamiltonian
with interaction potentials between the bodies. It would be best If these potantials
were known in advance, second best If they were known from other experiments,
but sometimes they may have to be fitted to whatever may be the current results so
far.

This book focuses on calculating cross sections from defined Hamiltonians, but
also considers phenemenclogical R-matrix models that fit data with a small number
of parameters. It also shows how to take cross sactions, which depend on energy,
and average them over thermal energy distributions te find the reaction rates that
are the ingredients to network calculations of nuclear reactions in stars.

244 Crasr rections and scattering amplitndes

The scattering of one particle on ancther may be reduced, we saw earlier, to the
dynamical problem of Bq. (2.3.20), invelving only their relative coordinate R, If
the energy of relative motion iz & and the reduced mass iz g, then the correspond-
ing wave numnber is related by £ = A%k%/2u, or k = +/2uf /A% Remember that
the relative velocity Iz v = p/fu = Ak/u.

A strict analysis of the scattering of a beam particle by a target nucleus should
use wave packets which are localized in space. The projectile and target nuclel
will be separately localized apart from each other, and then Schridinger’s time-
dependent equation can be used to follow the subsequent evolution of these wave
packets under the influence of the potential between the two nuclel We do not
do this, but use statlonary-siate scattering theory, which detarmines the evolution
of each separate Fourler component of a wave packet. In principle, if there are
mmany energies in the wave packet, then a superposition of many stationary-state
scattering waves for different &' should be used. I, however, the projectile beam
has only a narrow range of energies and 1s well collimated so that it peints in nearly
a single direction, then the same results can be obtained by using just one energy

¥ Thiz ramformation iz wmpecezzary for angle-integrated comes sections, and mixt be reconzidered when ther
are more than two bodies in the final = tane.
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E. We mavy then setupthe projectile beam in a single Initial direction k;. The wave
finction for such a bearn at position B will look like 4P%5% = Aexp(ik; - B).
We can always choose owr center-of-mass coordinate system R = (x, ¢, 2) so
that the beam is a plane wave with momentum fik; In the +Z direction, so more
simply
Y Caal (2.4.8)

for some amplitnde A. In order to caleulate the scattering cross sections, which are
ratios of fluxes, we nead to first determine the incident flux, the number of particles
per unit area per unit time. Using Bq. (2.4.1), this 15 7; = vg|A|* with v = Rk fu
for the incident ralative motion.

The scattered wave starts where the projectile and target are close together, at
i =2 0, and radiates ocutwards with Increasing separation . An outgeoing radial
wave will asymptotically be proportional to &7 & where & # 1s the wave number for
the cutgeing relative motion. The coefficlent of this scattered wave will vary with
distance Fand angles (@, ¢, but in such a way that, when integrated over all solid
angles, the total flux will be a constant at every large K value. If the scattered wave
can be written, for some f(#8, ), as

; Eiﬁ:f &

P = AF (6, ) R
with the same A in Bq. (2.4.8), then the final outgeing flux, from Bq. (2.4.1), will
be

(2.4.9)

i = ve|AF|F(8, &) /RE® particlesfareaisecond. (2.4.10)

The function f(8, @) iz called the scattering amplitude, has units of length, and In
general Iz complex-valned. The reason for having the 1 /R factor iz to ensure that
the flix follows an explicit inverse square law: on integrating j; over the surface
of a sphere of radius R (with dE& = R2d0),

fjfdz = fﬂf|A|2|f(e, ) F B2 READ =1.'f|A|2f|f(ﬁ,¢)|2dﬂ,(2.4.lljl

we have a constant total flux that iz independent of R.
The asymptotic form for the combined incident and scattering wawves Is thus

Eil![!fR:|

= (2.4.12)

,was}’m — ,wbeam _l_,wscat =4 |:Ein’c-¢'s + fl:ﬁ', r,i:)
The label “asymptetic’ here means that this is the form in the free space outside the
range of the interaction potential betweean the particles.

The scattered angnlar flux per steradian is i ;= Ry, namely

75 = ve|AF|F(8,#)|* particles/steradian/second. (2.4.13)
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The cross section has been defined as the ratio of scattered angular flux to the
incident flux, and se is

a(8, ) = Z—ilf(ﬁ, A, 2414

which Iz independent of A and R, and has units of areafsr such as mb/sr. For
elastic scattering vy = w;, and the velocity ratio (also called the ‘flux factor')
disappears. Cften the flux factor will be absorbed into the definition of a new

scattering amplituds
7o, 9) = Eﬁiﬁ, ?) (2.4.15)

so we have always

(6, @) = |F(8,8)|". (2.4.16)

We zee that the cross section o(@, ¢) Iz independent of A, since A is an overall
nermalization that scales the incident and scattered waves equally, and the cross
section is a ratio of cutgelng to incident flixes. We may therefore fix 4 = 1
without loss of genarality.

The next chapter beging with solving the Schrédingsr equation to find the scat-
tering amplitndes f(#, @) for spherical potentials with 4 = 1, so we have Im-
mediately the cross section for elastic scattering from Eq. (2.4.14) to compare to
experiments. Later, these formulae will be generalized to particles with spin, to
handle long-range Coulomb potentials, and then to more general BiA,CID reac-
tions, which require a multi-channel formmlation because the nuclel have a variety
of internal states that can be coupled together by the Interaction potential

Exercises
21 In the experiment of [4], the elastic scattering of L°F on MM at 170 MV was mea-
suired by positioning two position-sensitive silicon strip detectors (26 cm® in arca)
symmetrically around the beam axiz covenng #=3-9 degrees. A melamine
[ZzMeHg) target was used with density 1.0 n'1g.-’|::n'13 and the beam intensity was
2 % 10° pps.

(a) What was the angular coverage in the center-of-mass frame?
(b} Determine the zolid angle cormezponding to cach detector

ic) Estimate the order of magnitude of the total cross section obtained in that
zolid angle.

(d) Corrvert the differential cross section shown in Fig. 2 of [4] to the labora-
tory frame.
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3
Scattering theory

I am now convinced that theoretical physics iz actually philozophy.
Max Born

In order to find the cross sections for reactions in terms of the interactions between
the reacting miclel, we have to solve the Schrédinger equation for the quantum-
mmechanical wave function. Scattering theory tells us how to find these wave fune-
tions for the positive (scattering) energies that are needed. We start with the sim-
plest case of finite spherical real potentials between two interacting nuclel in Sec-
tion 3.1, and use a partial-wave analysis to derive expressions for the elastic scat-
tering cross sections. We then progressively generalize the analysis to allow for
leng-ranged Coulomb potentials, and also complex-valued optical potentials. Sec-
tion 3.2 presents the quantim mechanical metheds to handle mmltiple kinds of
reaction cutcomes, each outcome being described by its own set of partial-wave
chaxnnels, and Section 3.3 then describes how multi-channe]l metheds may be re-
forroulated using integral expressions instead of sets of coupled differential equa-
tions. Wea and the chapter by showing in Section 34 how the Paull principle re-
quires us to describe sets of identical particles, and by showing In Section 3.5 how
Maxwell's equations for an electromagnetic field may, in the one-photon approx-
imation, be combined with the Schrédinger equation for the nucleons. Then we
can describe photo-nuclear reactions, such as photo-capture and disintegration n a
uniform framework.

3.1 Elastic scattering from spherical potentials

When the potential between two Interacting nuclel does not depend on the orien-
tiation of the vector between them, we say that the potential is spherical. In that
case, the only reaction that can occur is elastic scattering, which we now procesd
to caleulate using the methed of expansion in partial waves.

48
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Incorning plans wave expiiks)

1

1

1

1

1

1

1 1 1

] ] ] Pie Yo

1 1 1 L4 -~

! ! ! B - S

1 1 1 ’ - '~~ .

] ] ] . " IS Y

: Voo N o EBsDN Y Beamn dirsction +z

1 1 1 ] N ] 1

1 1 1 ] N 1 1

[] [] [] ] ' [ []

1 1 1 1 . 1

1 1 1 Y \‘ " ]

1 1 1 A Py ’ . . .
A} S =" . 4

: : : . .t Uutgomg spherical wavez explikRyR

1 1 1 N~ ’¢ N .

1 1 1 ~ L d °,

] B [ I . R R, \

1 1

1 1

1 1

1 1

1 1

Fg 3.1, A plane wawe in the 42 direction incident on a sphenical target, giving rise to
zpheric ally outgoing zcattening waves

3.1.1 Pardial-wave scattering from afinite spherical patential

We start our developrment of scattering theory by finding the elastic scattering from
a potential V(R that s spherically symmetric and so can be written as Vi R).
Finite potentials will be dealt with first: those for which V{R) = O0for B = Hq,
where Fp is the finite range of the potential. Thiz excludes Coulomb potentials,
which will be dealt with later.

We will exarnine the selutions at positive energy of the time-independent Schrédinger
equation with thiz potential, and show how to find the acattering amplitnde f(8, ¢)
and hence the differential cross section o(8, ) = |F(8, @) |* for elastic scattering,
We will use a decomposition in partial waves L =0, 1, .. ., and the spherical nature
of the potential will mean that each partial-wave function can be found separately.

The time-independent Schrodinger equation for the relative metion with c.m.
anergy £, from Bq. (2.3.20), 1s

[+ V — El(R,8,¢) =0, 3.1.1)

using spherical polar coordinates (8, ) such that z = Rcesf, » = Hainfcosg
and y = Rsinfsng. In this equation, the kinetic energy operator T' uses the
reduced mass g, and is

T = ——vR

Rl 138 3 L
= |-=—| R = |+ = 3.1.2
z,u,[ R?-BR( aR)+R2]’ G812



50 arattering theory

with £.2 being the squared angular momentum operator

pro_p| L2 L 00 3.1.3

7" |amTe o Tsmeas \T 8| @19

We will also uge the z component of angular momentum, which Iz associated with
the operator

£, =22
18

H we keep the z-axis as the beam direction as in Bq. (2.4.8), and illustrated in
Fig. 3.1, the coordinates can be mmch simplified for the present case of spheri-
cal potentials. There iz now no dependence on ¢ of the initfal beam el*? which
implies that it iz an eigensolution of L. with eigenvalua m = 0. Furthermore
spherical potentials Vi ) are independent of both @ and ¢, which iz equivalent to
the Hamiltonian 7"+ 7 comruting with all compenents of the angular momentum
vector operator L, which we write as [T+, L] = 0.

These angnlar independences mean that, sinee the initial wave function is cylin-
drically symmetric and no potential breaks that symmetry, the final state st have
2 wave function that iz eylindrically syrometric too, as well as its external scatter-
ing amplitude. Thus we need only consider wave functions 4 &, #) and amplimdes
Fi#, ¢) = F(#) that areindependent of ¢. In quantum mechanical terms, the potan-
tial commmutas with frg, so the frg eigenvalua iz conserved during the reaction. Its
conserved value of rn = 0 implies that the wave function and scattering amplimdes
canneot vary with ¢.

Cur problem iz therefore to solve

[+ vV — El(R,8) = 0. (3.1.5)

(3.1.4)

The scattering wave functions that are selutions of thiz equation must, fromEq. (2.4.12),
mmatch smeothly at large distances onto the asymptotic form

lEinlu:R

PR, 6) = &+ F(8)— (3.1.9)

We will thus find a scattering amplimde f(#) and hence the differential cross sec-
tion of &) for elastic scattering from a spherical potential.

Fartial-wave expansions

The wave function 4 ( R, &) Iz now expanded using Legendre polynomials Prices ),
in what iz called a partial-wave expansion. We choose these polynomials as they
are eigenfunctions of both L% and L., with eigenvalues L(L 4+ 1) and m = 0
mspectively. We saw above that In the present case we only need sclutions with
min = 0, ag these solutions are independent of ¢. Furthermore, since the potential
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comrmutes with I, we can find solutions with particular values of angular mormen-
tumn L. Thesa solutions for individual L are called partial waves.

Lt us first write a single partial wave as the product of 2 Legendre polynomial
Fricosd) forany I=0,1, ..., and a part that depends on radins, which we write as
xz( F) /A for some function x z[ K] that we have yetto determine. When operating
on this partial-wave product, the V% in the kinetic energy operator gives

xelh) 1 ( db  L{I+1)

VE Prcesd) = = 7);@(1{) Pricos8). (31.7)

dRz  RE
The 1 /R factor of 3 (i) was chosen so that the second derivative d /d R® appears
in a simple form on the right-hand side of thiz equation.

Moreover, the { Fricos8)} 15 an orthogonal and complete set over angles 0 <
§ = i, satisfying the orthogonality and normalization condition

Srpe. (3.1.8)

‘T
Fricosd ) Pr.cosd) sm #de =
[RACDLICED —
This means that any function of angle can be expanded as ;b Pricosd) for
some coefficients bz, Thus any function of angle and radins can be expanded as
2o br( ) Pricos®) for the br (F) now functions of F.
We can therefore expand the full wave function as

[een)
(R, 8) = > (2L+1 )" Py(cos 6) iXL(R;. (3.1.9)
L=0 kA
for functions %r(F) to be found. The explicit factors (2L41)1% are built in for
comvanience, so that, as we will see, the % £(K) have simple forms in the limit of
zero potential. The finiteness of 4 (B, &) everywhere implies at least that xp(0) =
0 always.?

We now substitute the partial-wave sum of BEq. (3.1.9) In the Schrédinger equa-
tion Eq. (3.1.1) to find the conditions satisfied by the radial wave functions » p(K).
For the kinetic energy applied to Bgq. (3.1.9), we use the differential properties
(3.1.7) of the Legendre polynomials. For the potential energy term, we use the fact
that ¥ f) iz independent of #. After multiplying on the left by Fr«cosé), inte-
grating over all angles, and using the orthogenality properties of Bq. (3.1.8), we
conclude that for each L value there is a separate partial-wave equation

RE fdR L{L+1)
" 2u ' dR®  RZ

) + V(R — E] xc(f) =0, (3.1.10)

The spherical nature of the peotential is cmcial in allowing us to solve for each

! 1t implies mom precizely that xp (K = O{Kjaz & — 0.
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partial-wave function separately; thiz corresponds to angnlar meomentim being
conserved when potentials are spherical

Equation 3.1.10 1z a second-order equation, and so needs two boundary condi-
tions specified in order to fx a solution. One boundary condition already known is
that % (0} = 0. The other iz fixed by the large A behavior, sothat it reproduces the
enternal form of Eq. (3.1.6). Since f(#) iz not vet known, the role of BEq. (3.1.6) is
to fix the overall normalization of the 7 (A). We show below how to accomplish
these things.

As usual in quantum mechanical matching, both the functions and their deriva-
tives must agres contimously. We therefore match interior and exterior functions
and their derivatives at some maiching nedivs B = achosen outside the finite ranga
H, of the nuclear potential.

Radial salutions for zeve potential

For B = o we have V(R) = 0, so at and cutside the matching rading the radial
wave functions roust attain their external forms, which we name %7*(R). The
free-field partial-wave equation may be simplified from Eq. (3.1.10), and rewritten
using a change of variable from B to the dimensionless radius

o=kF, (3.1.21)
s0 the »F%( f) satisfy

d® L{L+1)
dpg?  F
This equation for the extarnal form %F* is a special case for # = 0 of the more
general Coulomb wave equation
d*  L(L4+1) 25
[d—pz T T, + 1| Xe(mp) =10, (3.1.23)
which has solutions defined in Abrameowitz and Stegun [1, ch. 14] and describad in
more detail in Box 3.1.% This second-order equation has two well-known solutions
that are linearly independent: the regular function £z, o) and the irregular fune-
tion Griw, 0). A regular function is so named because it iz zero at p = 0, and an
Irregular function because it is nen-zero at o = 0. Any selution X7, can be written
1z Xy = bAr 4+ o for some constants b and e chosen according to the boundary
conditions.
We may construct H f = & £ 1%, which are also two linearly independent

+ 1] X (ofk) = 0, (3.1.22)

? In this section we need jimt the spedal case of ¢ = 0, but we have begun here with a definition of the
oomplete Coulomb functons, as the 2q) o term will resppesr in the pext secton when Coulomb potentals awe
miroduced.
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Cowlomb functions
That Fri(n,pl iz regular means Frin, p=0] = 0, and irregularity means
&Gr(n, p=0) # 0. They are related by the Wronskian

dF5(n, p) dGrin e
Gulm p) =" = Frlnp)—2== =1
e de
or W(G,FI=ZGF —G'F = k (3.1.113

Mote that mathematics textz such az [1] umally define &7 az 45/ dp, but we denote
thiz by G. Since £ iz the dimensionless radivz p = k&R, we will use the prime for
derivatives with respectto 7, 50 &' = k3, efc. The Wronskian is cquivalently GEF -
GF =1

The Coulomb Hankel functions are combinations of F and &,

HE(n,p) = Grln,p) £iFrn, o). (3.1.12)

Coulomb functions forn=10

The » = 0 functions are more directly kmown in terms of Bessel functions:
Fi(0,p) =pirle) =me/2 " Fiiple)
Grl0,0) =—pyrle) = —(mp/2" Y111 /2(0), (3.1.13)

where the irregular spherical Beszel function 47, (o] is sometimes written az np(p) (the
Meumann function). The J,. and ¥, are the cylindrical Beszel functions. The s = 0
Coulomb functions forthe first fow L values are

F':'I:U:l .Io:l = sin =5

Goll, p] = cosg, (2.1.14%
Fi{0,p) = (sinp— prosp)/p,

G, p) = (cosp+ psingl/p, (3.1.15)
F3(0,p) = ((3—p%)sinp — 3p cosp)/p®,

Gal0,0) = ((3—p") cos p+ Bpsing)/p° (3.1.18)

Their behavior near the ongin, for p <€ L, iz

Fe0,p) ~ (2L+1j(2§—1)...a.1pL+l (.1.17)
Gpl0,p) ~ (2E-1)... 31 p7F, (2.1.18)

and their azymptotic behavior when o 32 L is

Fi(0,p) ~ sinlp - Lw/2)
G1(0,p) ~ eoslp— L /2] (2.1.19)
HE(0,p) o eFilemtmi2) _ (Fhotie (3.1.20)

2o HL"' dezcribes an outgoing wave e, and A, aninceming wavee ™.

Coulomb fimctiom for @ # O are described oo page 61, and Whittaker functons oo page 130,

Box 3.1: Coulomb functions
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solutions of Bg. (3.1.23). By Eq. (3.1.20), these functions are asymptotically pro-
portional to e**%  Since the radial mormentim operator 1s § = %E‘%= the linear
combinations H f asymptotically have radial mementim eigenvalues £RE, and
thiz means that H E‘ describes a radially cutgeing wave and Hy an incoming wave.

The partial-wave expansion of BEq. (3.1.9) can be found for any function 44 ( R, 8).
In particular, it can be proved [2] that the partial-wave expansion for the incident
plane wave is

[een)
. 1
6% = 3 " (2L+1)15 Py (cos8) — FL (0, kR), (3.1.24)
kR
L=n
using just the regular Coulomb functions Sr(0, kA). Thelr appearance In this
equation is the reason that (2L+1)i% were defined in Bq. (3.1.9), as we now have

%z = £z in the plane wave limit when the potential 1s zero.
In terms of the H f = Gr £ 17, the plane wave expansion Is equivalently

[xa]
. 11
L L —
6 = 3 (2L+1)i" Pr(cos ﬁ)ﬁﬁ[HL(D, kR) — HE(0,kR)]. (3.1.25)
L=0
From this equation we see that the incident beam has equal and opposite ampli-
tudes of the radially ingeing wave H; and the radially outgoing wave H E‘ This
describes a plane wave approaching the target, and leaving it again unchanged.

Roadial solutions with a potentiol

Cutside the potential we know the external form of BEq. (3.1.6), but not the scatter-
Ing amplitndes f{#). Atthe origin we know that %z(0) = 0, but not the derivatives
X7 (0). Because the boundary conditions are thus distributed at different radii, we
have to use trial solutions integrated from one radial limit, and determine the un-
known parameters by using the boundary condition at the other limit.
We may therefore Integrate a trial solution wp (A) of Bq. (3.1.10) cutwards, start-
ing with ur{0) = 0 and some finite % (0) # 0 chosen arbitrarily, using
wr(my = | P a8yt (3.126)
and some mirnerical integration scheme for second-order ordinary differential equa-
tions. The true solution will be some multiple of this: x7.(R) = Bur(R). In the
enternal region outside the potential, wz (A) will be found to be a linear combina-
tion of two linearly independent solutions of Eq. (3.1.22), such as H7F (0, k&) and
H7 (0, kR):
_ fBeln | et _ - +
Bur(R) = xo(R) "5 yFR) = A [HD (0, kR) — SLHF(0,kR)],
(3.1.27)
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for some complex constants B, Ap and Sp. The Sp iz called the partial-wove
S matrix element. (Tt will be unity for zero potential Vi R), as the solution momst
then be proportional to Fz(0, kR) only, by Bg. (3.1.24).) The Sz iz determnined In
general from wp(A) by matching the first and last terms of Bq. (3.1.27), and their
derivatives, at the rading B = «a, which iz outside the nuclear range H,. This is
most convenisntly done by constructing the Inverse logarithomic derivative, which
iz called the R-mmatrlx element

_ 1xzle) _ Lur(a)
RE= @ = e

where the a~! factor is used traditionally to keep the R matrix dimensionless.
Given a trial solution wz(f) in the interior region, although its absclute normaliza-
tion E iz not yvet known, its logarithmic derivatiee is the same asthat of 3 p(R), and
thus unambiguously determines Rz. The Ry then determines the S-matrix element
uniquely by matching with the inverse logarithmic derivative of xF%( R):

(3.1.28)

1 Hy — SpHY
RL:_—H’E S Hf;r . (3.1.28)
@4y —ardy
Implying
H: —aRpH”
§p =L =L 3.1.30
ETHP - aRoHY (3-130)

The matrix elements S are thereby uniquely determined by the potential. Next
we use themn to find the scattering amplimde f{#).

Equation (3.1.27) implies that the full scattering wave function has the external
form of the partial-wave sum

(R, 8) 2 % > 2L+ Pr{cos ) AL|HE (0, k B)— St HE (0, kR)),
L=0
(3.1.31)

which we now have to match with Bq. (3.1.6) in order to determine f(#) in terms
of the 7.

Substimting Bq. (3.1.25) In Eq. (3.1.6), equating to the right-hand side of Bq.
(3.1.31), multiplying by kA and using the asymptetic forms of Bq. (3.1.20) for the
Hf functions, we have

3 (2L+1)iF Py (cos 6) A ['1Le—i"'=R - SLrLei""R]
L=0

=3 (2L+1)i"Fr(cos ) %(iﬂe—“ﬂR — L) Lk F(g)e R (3.1.32)
L=0
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when both B > A, and &8 2% L Collecting togsther the separate terms with gkt
and e * & factors, we find

gt H [i(QL-I—l)iLPL(cos ) {ALSLrL - %rﬂ} + Fs:f(ﬁ')]
L=0

[een) '
— iR [Z(QL+1)1LPLI:CCE 8) {A;ﬁ - %1‘5}] . (3.1.33]
L=0

Since the e % are linearly indepandent, and the two [. . .] expressions in this equa-
tion are independent of R, they must each be identically zero. Furthermore, using
the orthogonality (3.1.8) of the Legendre polynomials, the second {. ..} expression
st also be zero, which implies Ay = 1/2. Substituting this result into the first
zero [, . | expression, we derive

Fie) = ﬁ > (2L+1)Prcos8)(Sg — 1), (3.1.34)
L=0

This important equation (3.1.34) constructs the scattering amplimde in terms of the
S-matrix elernents. The elastic differential cross section 1s thus
z

dg | : Z(QLH PL(CGS'f‘J(SL—l)i : (3.1.35)

The resulting full scattering wave function iz

= 1
YR, 8) = §(2L+1)15PL(.:05 8) g (), (3.1.36)

whare the radial functions have extarnal form for A > A, in detail as
¥ R) = % [HD (0, kR) — SLHF(0,kR)] . (3.1.37)

Fhase shifts

Bach matrix elemnent Sz 1s equivalently described by a phase shift 6p for each
partial wave by

§r = 2% (3.1.38)

by taking complex logarithms as 6z, = - In 8. Phase shifts are thus defined up to
additive mmltiples of . We often add suitable Integer multiples w2 £) of T,

51(E) = 5 Sy + n(E)r (3.1.39)
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to make 67 (£ contimous functions of energy £ for each separate partial wave I,
but no cross section should depend on this addition as e*™ = 1.
In terms of the phase shift 4z, the scattering amplitude can be written as

F8) = % > (2L+1)Pr(cos6)e¢t sin 6z, (3.1.40)
L=0

and the external form of Eq. (3.1.37) of the wave function is equivalently
XU R) = e [cos 6, FL(0,kF) +8indy Gr(0,kR)].  (3.1.41)

In this form we can see the reason for the name ‘phase shift’ In the asymptotic
rgion where both £ > Fyp and &R 3 L, we may use Bg. (3.1.19) to write
Eq. (3.141) as

X2 R) — ef[cos by sin(k B— L /2) + sin &, cos(k R— L /2)]
= e’Lam(kR + i — Lw/2), (3.1.42
The oscillations are therefore shifted to smaller B when 6r iz positive, which oc-
curs for attractive potentials (at least when they are weak). The oscillatory patterns
shift to larger A when &z < 0 for repulsive potentials. Physically, attractive poten-
tials pull the oscillations into its range, and repulsive potentials tend to expel the

scattering oacillations.
The external solution can be also be written as

xTHR) = FL(0,kR) + TLHF (0, ), (3.1.43)
whare
T; =e¥Csinéy (3.1.44)

iz called the partici-wave Fmatrix element. By Bq. (3.1.43), T Iz the coefficient
of HF(0,kR), an outgoing wave, and is related to the S matrix elernent by

S =1+2T;. (3.1.45)

The scattering amplinde in terms of the Ty is

[een)

F(6) = % > (2L+1)Pr{ces8) Tz (3.1.46)
L=0

For zero potential, 67, = Tr = 0, and x¥*(R) = Fr(0, k) only, the regular
partial-wave compenent of the incident plane wave.
Athird form of the external wave function is

X2 R) = €' cosdp [FL(0, kR) + KpGL(0,k R)], (3.1.47)
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Table 3.1. Relations berween the wave functions and the phase shifts, K-, T and
S-matvix elements, for an arbitrary pavtial wave Partial-wave ndices and the
arguments of the Coulomb functions arve omitted for claviy. The last two lres st
the consequences of zevo and real potentials.

Using: & K T 5
MR) = 5[ cos b + Gsin d] 11'K [F+KG] F+THEY  L[H- - SHY|
—i
1
a= a archan K MCt&nl-i—iT E].uﬂ
K= ban & T_ =S
14iT 1+5
_ 5 1o
T= e sin 1K 2':1 S)
) 1+iK .
5 — %id 14 2T 5
® 1-iK +a
V=0 5=10 K=0 T=0 §—1
V" real & real K real 14+ z2iT| =1 8] =1

with K = tam & called the partal-wave E-matrix element. The S matrix elemment
in terms of this iz

14K
C1-iKg

S; (3.1.48)
For zero potential, Kz, = 0. The K-matrix element may be directly found from the
R matrix alement Ry of the interior solution at the matching radins « as

Fr, — aRL £}

Ky =_"% — &L
L GL—aRLG'L’

(3.1.40)
where the arguments of the Fr and Gr are omitted for clarity. All of the above
scattering phase shifts &z and partial-wave elements Tz, Sz, and Ky, are indepen-
dent of , provided that it iz larger than the range K, of the potential.

From Eq. (3.1.49) we can sze the consequences of V(R being real Inthiz case,
the trial function u( f) may be real, and hence also Ry, by Bq. (3.1.28), Kz by Eq.
(3.1.49), and hence &, will ba real since tandp, = Ky, It is for these reasons that
scattering from a real potential 1s most often described by a (real) phase shift. This
corresponds to the matrix element Sz = %2 having unit modulus, [Sz| = 1.
The relations between the phase shifts and the K-, T- and S-mmatrix elements are
summarized in Table 3.1,
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Angle-imtegrated cross sections

From the cross saction o) = |f(#)|* given by BEq. (3.1.33), we may intagrate
over the entire sphere to find the angle-integrated® cross section

Fus s
Oa = f dqﬁf désm 6 o(6)
u] u]
= z«arf dé=im 6|f (8] *
u]

[ae )
.
=z > (2L+1)1 - Sg|°
L=0

A —
= > (2L+1)sm* iy, (3.1.50)
L=0

using the orthogonality and normalization Bq. (3.1.8) of the Legendre polynomials.
There exists an optical theorem which relates the angle-Integrated cross section
g to the zero-angle scattering amplinde. Using Fril) = 1, we have

Floy = i > (2L+1) (M — 1), (3.1.51)
1 L=0
50
Tmf(0) = %Z(EL—I—I)E&:&Z 3
L=0

k
= —dg. (3.1.52)
A
This relation existzs because the incident and scattered waves at zero scattering
angle have a fixed relative phase, and interfere In a manner that portrays the total

lpzs of flux from the incident wave to the scattered waves.

Srattering wsing rotated coovdinate systems
To find the scattering from an incident beam in direction k (not necessarily in the
+Z direction) to direction k', the Legendre polynomial Prices#) = FPr(k - k')
in Eq. (3.1.34) may be simply replaced using the addition theorem for spherical
harmonics [2],

L

> HRYE(K" (3.1.53)
M=

dar
2L4+1

FPricesg) =

% Mote that this integrated cmes section is sometimes called the fofef cmes section becaime it is the total after
mtegration ower all angles. However, we resenve the tarm “total' o include all pon-elastc final states oo, 8=
will be 1med in =nbsecion 3.2.1.
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whete K is the notation for a unit vector in the k direction. This, from Eq. (3.1.24),
gives the partial-wave expansion of a plane wave In direction kas

. 5 ., 1
R = g > VMR YM (k) FL(, kR). (3.1.54)
£ kR

Thus the amplimde f(k'; k) for scattering from direction k to k' is

FK' k) = ?—: > VR YR (2™ - 1) (3.1.55)
L

= TSR E T (3.L156)
L

and the full scattering wave function depends on the Incident meomentum as

- -1
PRk} = 4r > VMR YY(R) X (R). (3.1.57)
kR
L
In both caszes, the vector k after the semicelon indicates the incident momentum.
Mote that a spherical harmenie, for its unit vector argument in the 4z direction, is

Y (2) = o 2&%, so another form of Eq. (3.1.24) is

[ae )
. -1
gths — 1H44r§ iEF/2L+1 YE(RJEFL(D, kR (3.1.58)
L=l

for the plane wave In the +Z direction.

3.1.2 Canlomb and nuclear potentials

In general, we saw In Chapter 1, nuclel have between them both a short-rangs
attractive nuclear potential and a leng-rangs Coulomb repulsion. Thiz Coulomb
compenent hag the 1 /R form shown in Fig. 1.3, and invalidates the theory pre-
sented above for finite-range potentials. We develop below a theory for a pure
1/F component, and then see how to add to it the effects of an additional finite-
rangs correction. We still assume both the Coulomb and miclear potentials to be
spherical.

Pure point-Cowlomb scattering

Hwe consider only the point-Coulomb potential between two particles with charges
Z7 and Z; times the unit charge e, we hava

Vi(R) = 212" /R, (3.1.70)
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Conlomb functions prn £ 0
The functions Fr.(n, g1, Grin, p) and HLi (n, p) are the solutions of Eq. (3.1.23) for
1 # 0. In terms of a *Coulomb constant’

2le=m 3 T(1 + L + in)|
(2L+1)!

Crlm = (3.1.59)

and the c onfluent hypergeometric function | 1 (a2, &, 2] = A (e, b, 2], the regular fune-
tion defined in Abramewitz and Stegun [1, ch. 13] as
Frin,g) = Crlm)pttte®s | Fi{L+1 F in; 2L+2; £2ip), (3.1.60

where cither the upper or lower zsgns may be taken for the zame remilt.  The
L a; b 2) iz defined by the series expanzion

az  ala+l)z?  ala+l)(a+2) 2¥
610" B(b4+1) 21 T BB+1)(b+2) 3!

1 el =1+ +.... [31al)

The two irregular functions hawve the coresponding definiions
HE(n,p) = Grlnp) £iFiln, p) (3.1.62)
= et (2 N1 L & i, 2042, F2p)  (3.1.63)

where U@, b, #) iz the corresponding irregular confluent hypergeometric function de-
finedin[l,ch 13] The @ = p— Lw/2 + op(n) — nln(2p), and

ol =arg N1+ L + in) (3.1.64)

izcalled the Cowlomb phare shiff. The functions may casily be calculated numeric ally
[1, 2], also for complex arguments [4].

Their behavior near the oniginis thus

Frlmp) ~ Colmle™, Grimpe) ~ [(BE4+10C0im) o577, (.16S)

noting that
2y Wf L% 4 nt
o =4/——— and ~ =t— T . 3.1.66
ol = o 7 Ak Ty Cril ( )

L(2L+1)

A tranzition from zmall-p power law behavior to large-p oscillatory behavior occurs
outzside the classical turming point. This point iz where 1 = 21/ + L(L4+1)/ 0%,
namely

Prp =M £ M+ L{ZL+1). (3. 1.67)

In nuclear reactions » iz vzvally positive, so with purely Coulomb and centrifugal
potentials there is only one turming point. Clazzically, the tuming point is at the dis-
tance of closest approach, R .., of BEq. (3.1.77), and thess quantities are related by
Prp = kflpea, ifthe classical impact parameter b is related to the quantum mechanic al

partial wave L according to
kb= LiL+1)ms L+ 1. (3.1.68)

Ths azymptotic behavior of the Coulomb functions outsids the turning peint (g 3 pyp)
iz

Frin,pl ~an®, Gpln, gl ~ cos@ and HLiI:n,p:I ~eTE (3.1.69)

Box 3.2: Coulomb functions for % # 0
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For scattering with relative velocity v, we define a dimensionless Sommerfeld po-
wameter 77, as mentioned before, by

(3.1.71)

 BRmet LIt L1t ( I )é

T 7w T mk R “\2E
where the energy of relative motion is £ = *%% /2u. A beam in the direction k
iz no longer e B swhen 5 #£ 0. Fortunately, the Schridinger equation with the

Coulemnb potential can be solved exactly, and the selution in terms of hypergeo-
metric functions is

Pk, R) = e o= D1 4in) A~ 1 (kR — KRY),  (3.1.72)

defined using the garmma funetion I' 2) and the confluent hypergecmetric funection
1 by 2) of Bq. (3.1.61).

In partial-wave form, the generalization of the standard +Z plane-wave expan-
slon Bq. (3.1.24) 1z

[xa]
1
Pe(kz, R) = > (2L+1)15Pr{cos8)— Fr(n, kR). (3.1.73)
kR
L=0
We are now using the regular Coulomb function £p(n, & R) with 1 # 0. Detalls
of £ and &y, for general ), and their asymptotic forms for small and large g, are
given in Box 3.2. In particular, the asymptotic form of Frin, bR) is

Frim kR) ~sm{k R — Lo /2 + or(n) — gIn{ 2% K)), (3.1.74)

with the Coulomb phase shift or(7) Iz given by Bg. (3.1.64). The logarithmic term
in this expression iz needed to accommedate the 1 /A Coulomb potential. Thus the
phase shift caused by the Coulemb potential is o7.(%), once &R 32 In{2kR).
The cutgeing part in 4f.( k=, R} iz found by mmatching at large values of A—z to
pil kE—71n 2k K]

Yok, ) I glbsama By p ) ——— . (3.179)

The 4.(kZ, R} hag a scattering amnplimde f.#) which, using the phase shifts In
Eqs. (3.1.34) and (3.1.38), is formally the partial-wave sum

1 & .
Je(8) = o LZ::D(QLH)PL(.:OS f) (e _ 13, (3.1.80)

in terms of the Coulomb phase shift. However, this serles expression does not
comvarge, because the Coulemb potential does net go to zero fast enough for large
R = L/k, and the phase shifts oz() never go to zero for large L. The series only
has meaning if a screened Coulemb potantial 1s used, and then the screening radius
let tend to infinity: see Taylor [3, §l14-a].
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The clazzical zcattering orbit in a Coulomb potential iz a hyperbola, in which the
distance of the projectils in polar coordinates [ &, o), starting at @ =, iz
1 1 .
= —szhnea—

REla) & 262

(14 cos al (3.1.75)

where D, = 51526/ B = 2n/k iz the distance of closest approach in a head-on
collizion, and & is the impact parameter for a general collizsion: the distance between
the target and a straight line continuing the initial trajectory. Az & — co after the
collizion, o becomes the scattering angle #, which from Eq. (3.1.75) is

g7
ban - = 2 176
YT (3.1.78)

The distance of closest approach for arbitrary scattering angle & is

Rol) = E [1 + msec%] , (3.1.77)

and the classical differential cross section, using Eq. (3.1.76), iz

b8} db n®
T sin®df 4ksin®(9/2)

o (#) (3.1.78)

Box 3.3: Classical Coulomb scattaring

H, however, Bq. (3.1.72) 1z directly matched to Eq. (3.1.79) for large (H—z)

values, the asymptetic amplimde 1s found to be

F6) = — exp [—ipIn(sin®(6/2)) + 2ioa(xm)], (3.1.8

i
2k =in®(6,/2)

L)

which 1z called the point-Coulomb scattering amplitude. The point-Coulomb cross

section is therefore

.TI.I,Z

orumn () = |F=(0)]" = A% an®(6/2)

(3.1.82)

and iz called the Rutherford cross section, because It happens to be the same as in

classical scattering theory (s2e Box 3.3).

Coulomb4 nuclear scattering

With the nuclear potential included as well as the deviation at short distances of the
Coulemb potential from the pure 1 /R form, the scattering potential may be written
as V(R) = Vz(R) + Va(R) for some finite range potential Vi, (K) in addition to

the point-Coulemb potential of Eq. (3.1.70). We assume that V,( &) is spherical.

The phasze shift from Vi{R) will be 6z # orl(n), so we define an addition:l

mucleay phose shift 07 by

6z = or(7) + 6}, (3.1.83)
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To find the Coulomb-distorted nuclear phase shift 67, or equivalently the miclear

S-matrix element 8% = e we match to a generalization of the asymptotic form

of Bq. (3.1.37), namely to
i - k3
XTH(R) = SHE (7,kF) - STHE (1, kR)] (3.1.84)

This equation simply uses Coulomb functions with their first argument » now not
zero, but given by Bq. (3.1.71). Similarly, in terms of the nuclear phase shift 67,
we generalize Bq. (3.1.41) to obtain

XEU(R) = €L [cos6F Frn kR) +smdf Gr(n kR)].  (3.1.85)

Using Eqgz. (3.1.34) and (3.1.38), the scattering amplimde f,.(¢) from the com-
bined Coulomb and miclear potential V(&) will have a factor

gfL _ 1 — (Eﬁa'r.(??]l — 1)+ EEG'L':??:'(EZQE -1}, (3.1.80)

so that the partial-wave sums will be a combination of the point Coulomb amplitnde
of Bq. (3.1.80) and an additional ‘Coulornb-distorted nuclear amplitnde’ fo(8):

Frc(8) = F(8) + Fa(6). (3.1.87)
The new scattering amplitnde for the nuclear petential in addition to the peint-
Coulemnb acattering is found by using the second term in Bg. (3.1.86):
1 [een)
Falf) = —— > (2L+1)Prcos)e™ 1T (87 — 1), (3.1.88)
Ak L=0

This iz therefore #ot just the amplimde due to the short-range forces alone.

Mote that we can optionally muoltiply both f. of BEq. (3.1.81) and f, of Eq.
(3.1.88) by a phase factor such as exp(—2op(s)), as only relative phase makes
ary difference to the Coulombnuclear cross section

Tne(8) = |Fe(8) + Fal8)F = |Facl8)[*. (3.1.89)

Bince this cross section diverges to Infinity at smoall angles (see BEq. (3.1.82)), very
often elastic scattering cross sections are presented numerically in terms of thelr
ratio to Rutherford, written as?

T/ TRuth = Tne(B) /TRutn(F), (3.1.50)
which becomes unity at small angles.

4 written this way for simplicity, omitting the #-dependencies on the left side.
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Fig 3.2 Examples of rezonant phaze shifts forthe J7 = 3727 channel in low-snergy n—a
scattering, with a pole at &' = 0.96 — i0.92/2 MeWV There iz only a hint of a resonance
in the phase shifte for the J7 = 1727 channel, but it does have a wide resonant pole at
19— i6.1/2 MW

3.1.3 Resonances and virtwal states

When cross sections are plotted as functions of energy, o £, either angle-Integrated
or for a specific angle, these plots are called excitation functions. They often show
a range of narrower and wider peaks, ag discussed in subsection 2.2.2. Many of
these peaks are caused by resonances, when the interacting particles are trapped
together inside a potential barrier for some peried of time 7. This gives rize to
variations in the excitation function with energy widths I' ~ /7. We will see that
resonance variations can be peaks, but also sometimes interference dips, or a peak
next to a dip: all these patterns may result from a single resonance interfering with
pther scattering mechanisms.

A resonance Is described by its total spin Jiop and parity m = 1 (which we
combine in the notation JT,).° along with its energy £y and width T' in units of
anergy. A resonance will show characteristically as a rapid rize of the scattering
phase shift 6{ &) ag seen in Fig. 3.2 for the 3/27 channel, and thiz corresponds to
a time delay for the scattering of a wawve packet Iz of the order Af ~ AdS( A7) /dE

[81.°

% With the one-chammel scattering considered &0 far, Jior = Loand 7 = {—13%.

& This paper [6] explaits why phase shifts which decregre am ot candidates for meomances becarss this cor-
mepondE b0 4 Hme adwence wihich iz imited by casality o the size of target divided by welocity of ipcident
wlative motion.
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The form of the increase iz often found to be like

§(B) = el B) + Grea(E) (3.1.51)
where
frea( &) = arctan (EPiQE) + nf &), (3.1.92)

for I = 0, and for some background phase shift dvg( &) that varies only slowly
around the resonance energy. The s £) Iz the integer depending on energy that
may be optionally added to make d...(£) a continuous function of energy. If the
background phase shift dpg( £ == 0, then by Bq. (3.1.50) the resonance produces a
contribution to the angle-integrated cross section of

el 0 W i—j(?L—l—ljsﬁnz dpeg [ )

I'é/4
(B — £ 4 T2/4°
which shows a clear peak at £ ~ A with a full width at half maximrnm (fwhm) of
I

Because the propagation of a wave packet in the presence of a resonance expe-
Hences a time delay of 7~ i dd o (£ /dE, the form of Bq. (3.1.91) implies that
7 ro BfT as earlier expectad.

A resonance with the form of Bq. (3.1.93) with dp (&) = 0 1s called a pure
Brelt-Wigner vesonance. If dpg(£) # 0Othen Fig. 3.3 shows some of cther Brelt-
Wigner patterns that may be produced. If, moreover, gl £7) varies with energy, a
resonance may still exist even though the phase shift 60 &) does not pass w/2, such
ag with the 1/27 scattering in Fig. 3.2.

The interference and cancellation effacts shown in Fig. 3.3 for the angle-integrated
elastic cross sections cccur when there Iz a background phase shift in the same

4
= %(2&1) (3.1.93)

partial wave as the resonance. If there are contributing amplimdes from differ-
ent (non-resonant) partial waves, then there can be no cancellation effects for the
angle-integrated cross sections of Bq. (3.1.50) since these are incoherent In the
partial-wave sum A resonance can only give ccherent interference with another
partial wave If the angular cross sections are measured, since BEq. (3.1.34) iz co-
herent in Itz partial-wave sum.

H the 5 matrix 1s calenlated for a Breit-Wigner resonance using the pararnetriza-
tion of Bq. (3.1.91), then, using tan o (&) = %P{(EI — £ and Eq. (3.148),

2idng () & — £ — /2

S(E) = .
(£) =e E— B, +1T/2

(3.1.94)
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Fig 3.3 Pozzible Breit-Wigner rezonances. The upper panel shows rezonant phasze shifts
with zeveral baclkground phase shifts 8y = 0, w/4, 72, and 37/4 in the same partial
wawve, The lower panel gives the ¢ omesponding contributions to the total slastic =cattering
crozs section from that partial wave.

This expression shows that if the function S{£) were continued to complex enet-
gles £, It would have a pole, where the denominator iz zero, at £y = £ — I /2.
These are poles in the fourth quadrant of the complex energy plane, near but below
the real energy axiz. The existence of such a complex pole leads mmost theorists to
define resonance by its pole position,” by the parameters JT, and complex £,°
In the example of low energy n—o scattering In Fig. 3.2, calculations of scattering
it complex enargies show that there 1s indeed a pele at £ = 0,96 — 10.92/2 MeV
in the 3/2~ channel. There iz only a hint of a resonance in the phase shifts for
the J™ = 1/2~ channel, but we find it does have a resonant pole at 1.8 — 16.1/2
Me¥. A wide resonance (one with large I') such as this one has a broad effect on
scattering over a large energy rangs.

Mathernatically, therefore, a resonance iz a pole of the 5 mmatrix in the fourth
complex energy quadrant, with Refy = 0 and Im#£, < 0. Resonances may also
be characterized as unbousnd states: states that would be bound if the nuclear po-
tential weare stronger. In the complex plane, bound states are alse poles, on the
negative real energy axis and the positive Imaginary & axis, as shown by the circles
" % should note, however, that them yet exist cmes secton peaks that are Dot associated with poles, as poted

for emample in [5].
? In the mor geneml multichanel theory to be prsented in subsection 3.2.1, we will see more how many

partial-wave chanpels may couple to the total JiT, . The resonance peals will then ocour io all the partial
waves, and the definidon in berms of an 5-matrix pole i= applicable o mulb-chanpel as well 8= ope-chamel

ecattering.



68

“Im E lm &
Energy hormentum
plane plare bound
stats
le=s
wirtual bound
bound =shte
stat v Re £ Re k&
> >
lbssbound  °F wirtual z
TE50 Na nos =ata 520 Nancs

Fig 3.4 The comespondences between the energy (left) and momentum (right) complex
planes. The arrows show the trajectory of 2 bound state caused by a progressively wealer
potential: it becomes a resonance for L » 0 or when there iz a Coulomb barier, otherwize
it becomes a virtual state. Because & o &2, bound states on the positive imaginary & axis
and virtual statez on the negative imaginary axis both map onte the negative energy axis.

in Fig. 3.4, When the potential for a bound state becomes weaker, the pole moves
towards zero energy according to the arrows, and then becomes a resonance (the
squares in Fig. 3.4) if there is a potential barrier between large distances and the
Interior nuclear attraction. This trapping barrier could be a repulsive Coulomb bat-
der for proton—nucleus scattering such as seen in Fig. 1.3, or a centrifugal barrier
for either neutrons or protons in angular mementurmn L > O states. The width of
the resonance is extrernely sensitive to the height of these barriers. Very wide reso-
nances, of poles a long way fromm the real axis, willnet have a pronounced effect on
scattering at real energles, especially if there are several of them. They may thus
be considerad less important physically.

The case of neutral scattering in L = 0 partial waves deserves special attention,
since here there Is no repulsive barrier to trap, for exampele, an s-wave neutron.
There iz no Breit-Wigner form now, and mathematically the 5-matrix pole 5, is
found to be on the negative imaginary & axis: the diamends in Fig. 3.4, This
corresponds to a negative real pole energy, but thiz is #ot 2 bound state, for which
the poles are always on the positive Imaginary & axis. The neutral unbound poles
are called virtual states, tobe distinguished from both bound states and resonancas.
The dependence on the sign of &, = +./2uf, /A% means we should write the 5
moatrix as a funetion of & not & A pure virtal state has pole at &p = 1/aq on the
negative imaginary axis, described by a negative value of up called the scattering
lepgth. This corresponds to the analytic form

_k+ijag
k—ijag’

giving d(k) = —arctanapk, or kcot 8(k) = —1/ap. These formmlae describe

S(k) = (3.1.05)
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the phase shift behavior close to the pole, in the case for low momenta where & s
not too much larger than 1/ |ea|. For more discussion see, for example, Tavlor [5,
513-b].

3.1.4 Nuclear currenis ar flux

When a charged particle s scattered from ancther particle, its acceleration during
the reaction will in general lead to an exchange of energy with the electromagnetic
field according to BMaxwell's equations. The electromagnetic field depends more
speciically on the muclagr current or flux of the charged particles, and therefore
we nead to find this current in terms of the scattering wave functions.

Cre definition of the miclear probability current or flux was that of BEq. (2.4.1),
namely j = v|t¥|®, but this definition is only preliminary as it uses for v the average
bearn velocity, and net a local property of the wave functions in the presence of
potentials. A proper definition of the nuclear current j(r, ) should at every position
tzatisfy the continmueity equation

vV jir,t) + # =10 (3.1.94)
with probability density p(r, ) = |(r, £)|%. A cwrent satisfying this continuity
equation is called a conserved current.

Using first the free-field Schrodinger equation Ty = ﬁ'ﬁ%—' with the kinetic an-

ergy operator T' = —%?2, we may evaluate the rate of density change for a free
particle as
prp Sy O
x -~ a 'tV

_ i Zonh¥ * 7
= 5 (V)9 — 9Ty
i . .
= 21-—#?' [(Wa) "4 — 4" Wed]. (3.1.97)
This yields a local conserved current or flux for the free-field case of
= —_ ﬁ * *
Jiree = m(’%ﬂ Vi — V), (3.1.98)
and leads us to define the free curvent operator aither as
e = —(T — 7) (3.1.99)
Jfiee = 21—# y L

where the arrows Indicate the target of the differentiation, or better as a position-
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dependent operator

Jereelr) = 21% lo(e—r;) Vi — V; (e—r;) }, (3.1.100)

where the r; are the variables in terms of which the wave function is written as
w(r;), and the gradients V; are with respect to the ry. The current operator of
Eq. (3.1.100) can be used in normal matrix elements such as {@[jgee(r) [1#) which
Integrate over the internal r; coordinates, and yield the current as a function of v

We define the electric current j, by means of the electric curvent operator j:q
that iz proportional to the charge times the nuclear current of that charged particle.
That is,

ja=ai awd J = gise (3.1.101)
for a particle of charge ¢, to be used for example In subsection 3.5.2 for photonu-
clear reactions.

In the case of mtenzcting particles because of a potential between them, 4 sat-
isfies [ + V)i = ih%, where we now allow the potential ¥ to be a general
operator that operates on functions of the r;. It may have derivatives (from a spin-
orbit force) or may be parity- or partial-wave-dependent. These are all particnlar
kinds of non-localities, where a non-local potential kernel such as Vi{rf,r;) re-
moves flux at one position r; and has it reappear at another place r} # r;. In this
case It should not be surprising that we have to adjust cur definitions of the nuclear
current, which is suppesed to follow continuity.

BEvaluating the rate of density change gives

a’iﬂ'*’tﬂ _ 1 ¥ * *+ 1 I
s (E[TJFV]@&) W 4 2 E[T*Jrv]fw
i ® * 1 ey ¥ %
= 21.—Jufv-[(w) ¥ — PV SV - (V)]
3 - L
Thus % Vg %{@m [ﬁ(r—rijv _ vfa(r—r.i)] ).

(3.1.102)

Tf the potential ¥ were a local real function of position r; only, then this last term
disappears, and the free current operator of BEq. (3.1.99) gives a conserved currant.
In general, howaver, this is not the case, and it is a difficult task to find a sacond
contribution j; to the current oparator so that the sum

j = Jiree + Jz (3.1.103)

iz a conserved current when the Interaction potentials are present. Hfthisz additional
term cornes from the two-body interaction terms, it Iz called the twe-body current



3.1 Elastic scattering from spherical potentials 71

contribution. It st satisty

Vjz= [Eu{r ) V — v (e—r3)), (3.1.104)
so that the full current operator satisfies

V.j= %[E(r—r,,-,) H— H 8(r—r3)], (3.1.105)

which is equivalent to the criginal continuity equation (3.1.96).°

Later, in subsection 4.7, we will see that Bg. (3.1.105) 1s by itself sufficlent to
solve our problemms for one particular Important application. Fer electric transitions
at long distances and low meomentm, thare exists that what will be called Siegert’s
theorem which allows us to nclude two-body currents, because in that case their
only relevant property is the one given by Bq. (3.1.104), that iz, by the contimity
equation itself. However, we canncet from a purely nucleonic model calenlate the
affect of two-body currents jz in magnetic transitions, and in electric transitions
with higher momentum transfars,’” so in their caleulations we will have to omit
the terms depending on j:z in thiz book.

3.1.5 Complex potentials

Citen, the effective interactions between two nuclel give the best fit to experimen-
tal cross sections if they are allowed to have megative imaginory as well as real
compeonents, even though the microscopic interaction potentials between Individ-
ual micleons may be entirely real valued. The effective Imaginary compeonents
arise from a variety of reasons, but principally because In nature there are more
rractions cocurring than can be described by the spherical potentials dealt with so
far. Thesa further reactions remove flux from elastic scattering, and we will ses
that this removal can be equivalently described by complex potentials.

In the next Saction 3.2 we will see how to define multiple channels for the modeal
wave functions, and later (subsection 11.5.2) it will be shown how eliminating
such channels from our medel induces imaginary potentials in the remaining com-
ponents. Imaginary potentials are also present in a potential that reproduces am-

® The comtimuty equation iz not sufficient by iEelf to define the complete current. It only defines the *longimdi-
nal' component of jz. Dot it * mneverse’ component, becmss adding % » X{r) o jz doss Dot change % - g
whatewer vector field X(r) might be chosen.

That iz, only if we have a microscopic explanation of the potential pon-localides in terms of a local theory
(for example of meson exchanges) can we have a 1mique epedfication of local miclesr curent. This would
be the case whem we start fmom a fully gage-imvarisnt Tagrangian. In other cases, it may sill be possible o
omEct & curent which is consenved. For example, Sache [7] finds a curent for iscepin-exchange fomes,
Fieka [#] finde a ciurment for spin-orbit potentials, sod moently Mamcucci ef ol [9] find comenved curents
for modern fully-fitted paro- and thres-micleon potentdals, but thess defivations, however, do oot give umgue
meults for the comenved curent: that can only be obtained in definite meson-exchange models. The effect of
these ambigiites is that we do oot really koow the details of the cirment at shont nucleon-miclenn dis tances.

10
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The interaction potential between a nucleon and a nuclans iz vzually well dezcribed by
an attractive nuelear well of the form

174
14 exp (—R:R’)

which iz called 2 *Woodz-Zaxen’ (or *Saxon-Woods" or "Fermi™) zhape. The central
depth ¥} iz typically between 40 and 50 BMeV, and the diffusenesz a, about 0.6 fm.
The radiuz R, iz proportional to the size of the nucleus, and iz commonly around
R, = r.AY% for a nueleus of A nucleons, with v, & 1.2 fm  Similar potentials can
be uzed for the interaction between two nuclel with mas: numberz A, and A,, if the
radii are scaled instead az R, = T,I:AFS + A;’fsj, since thiz iz proportional to the
zum of the individual radii.

VI A =— (3.1.106)

Thiz potential iz uzually c ombined with an imaginary and a zpin-orbit part. The imag-
inary part, which iz present at higher scattering energies, as discuszed in subzection
3.1.5, iz alzo often given by a Woods-Saxon form

¥
1+exp (—R;.R")

for a similar geometry &; 5 F. and o; 7 ., and a depth V} fitted to experiments
giving ¥; ~ 10-20 MeV depending on energy. Sometimes a surface-peaked imagi-
nary contribution iz alzo included, with a shape like the derivative of Eq. (3.1.107).

W(R) = — (3.1.107)

The spin-orbit potentialz will be desenbed in zubzection 4.3 2.

Eox 34: Typical nuclear scattering potentials

plitndes that have been averaged over a range of scattering energies (subsection
11.5), especially if we average over many compeound-rucleus resonances (subsac-
tion 11.5.3). The potentials that fit elastic scattering are therefore generally com-
plex, of the kind outlined in Box 3.4 and again in Section 4.1.

I the potential is V(R) + 1W/(R), then it is no longer Hermitian, and the S
moatrix iz no lenger unitary. If the Imaginary part W < 0, then we have absoiptive
potentialy, and a loss of flux. This can be made to approximate the flux leaving in
the exit channels that are not explicitly in our model. Potentials with both real and
Imaginary parts are called sptical potentials, since they describe both the refraction
and absorption in the same way as a light wave passing through a cloudy refractive
medinm.

Tf the Schrodinger equation [T + V 4 1W]q = i85/ now has an imaginary
potential, then we can calculate the rate of loss of flux as

MY _ o 2
L=V g Wy, (3.1.108)

As W < 0, the imaginary potential acts as a sink of particles. The imaginary




3.1 Elastic scattering from spherical potentials 73

potential causes particles to be remeoved from the Incident beam with an additienal
rate of

o 2
= 2w (3.1.109)
gty R '
for the density p = |#|*. Thus, if the transport from the kinetic terms could be
neglactad, the prebabllity density would decay as

At) oo efWHE = gmEWI/E (3.1.110)

When complex potentials are Introduced into scattering theory, all the previous
scattering theory remmains valid, but now the phase shifts 67, become complex, and
the moduli |8z | # 1. For absorptive potentials we have |Sg| < 1.

There is now an absorptive cross section o of flux disappearing fromm the elastic
channel, which can be caleulated as an integral of W R) multiplied by the proba-
bility density

o4 = % f [-W(R)] W(R)[* IR, (3.1.111)

where ¢ s the velocity of the incident beam so 2/Av = &/E. In terms of the
partial-wave radial functions xr.( f), the absorption cross section is

2 A

AT mar

[een)
er+1) [T-ww] ka(Rl iR G111
2 a
Since, in the L'th partial wave, the difference between the square moduli of the
coefficents of the incoming and outgoing waves in Bq. (3.1.37) is 1 — |Sz|%, we
define a reaction cross section as the sum over all partial waves:

or = %ZL:(QL+1)(1 — ISz, (3.1.113)

We can use the Schrodinger equations for x7, and its complex conjugate for %% to
Integrate twice by parts and prove that

Rk

_ R 2
=5 -8l ey

2
- [ xat®y Wi @ ar
0
and hence, in this spherical potential case, that ¢4 = ogr. The next section will
discuss more general Hamiltonlans, and as these couple also to nen-clastic exit
channels, we will s2e that, In general, or will be larger than o4 by precisely the
sumnrned cross sections to these non-aelastic reactions.
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3.2 Multi-channel scattering
3.2.1 Multiple channels

In the reaction between two nuclel such as 12C + d, a variety of mass rearrange-
ments may be possible, such as 1*C 4+ p, N + , etc. We define each of these as
a different mass partition, and label them according to variable z. Wa deal in this
chapter only with two-body partitions, leaving three-body breakup (for example
to *C 4+ n + p) until Chapter 8, but in all cases the sum of the particle masses in
each partition %, #ix Iz almost the same for each = The total 1s only almest the
same because of relativistic effects, and hence the different €-values describing
the energy differences between a palr of partitions according to Bq. (1.1.3).

Bach partition z will therefore consist of two bodies, one we call like the pro-
jectile, and the other we call target-like. Lat the vector Ry, exttending from the
target-like nucleus to the projectile-like one, describe their mlative position. Let
p and t label the state (the energy level) of the projectile- and target-like nuclel
respectively, to distingnish their ground state from any excited states. Bach state
will have a definite spin and parity, so we label thelr spins by I; and L. We denote
the miclens internal coordinates by £, and £,, which would be the spin states for
mucleons, and sets of spin and radial coordinates for clusters of nucleons. We will
use ¢77, (£p) and @}, (&) to refer to the whole quanmm states of the projectile
and the targst, respectively.

Let L be their relative angnlar mementim, as in the previous section. MNow,
howeaver, we have to couple together L, I, and I, to make some tota! angular
momentum Jeeg. This can be dene in two ways, either by coupling I to I, first,
of L to Ip. Thereby we Introduce two intermediate angular momenta, S o Jg
raspectively, so these two schemes are named as 'S basis’ or ‘T basis™:!!

‘HSbasis’  Channel spin & Ip4+L =58 L4 5=Ju
‘Tbaziz” Projectile J L -I—Ip = .]p .]p + 1, =T,

These are two complete and orthonormal basis schemes. The 5 basis has the ad-
vantage that compeound-nuclens resenances typically have little mixing of channel-
spin quantum mimmber, whereas the T basis has the advantage that projectile spin-
orbit forces are diagonal in this basis. Most often we will use the T basis for both
bound and scattering states. Later we give the conversion formulas betwaeen the
two basis schemes.

The set of all quanturn mumbers for a given total Ay, in the T basis
{wpt, LIpJpl:}, will be abbreviated by o Bach z denotes a mass partition, each

1 Eometimes they are called *1S' and 4jj' rezpectively, but those mames aw more appopriate for coupling fbwer
mther than three angular momenta.
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p,t} denotes an excited state palv, and each o denctes a partial-wave channel.
The unqualified noun ‘channel’ will refer to one of these according to context.

The relative coordinate R, depends on the partition, so the radial wave function
of relative metion will be weitten as i, ( A.), In place of x £.{ K} for the one-channel
case. The total system wave function iz now written as PR, £5, &), In place
of 9#( F, #) in the one channel case, and will contain a sum over the partitions,
where each partition is represented by a product of the Internal states qi:?:% (£5) and
qﬁﬁm (&) as well 2z a wave function for their relative orbital motion. We assume
for now that the projectile and target nuclei are distingnishable as far as the Pauli
principle iz concerned: the antisymmetrization of the wave function for identical
particles will be discussed in Section 3.4.

In sach partition z, we define first the state of two nuclel In relative metion with
total angular momentim - and projection Ay, When we include the Clebsch-
Gordon coefficlents for coupling the angular momenta together, in the T basis the
basiz set of wave functions for a given partition = 1s

@EF?LL(RW:‘EF: ‘Et:]
- 1
B > IAMCL o (ft)iLYﬂd(Rw)Egﬂjmliﬁm)

LoD Jo T M gty M e
':LM: Ipﬁpl‘praHJpMa: Itﬁtl"rb\:ut Mtcut:'

= 3 [t oG], o@e)]  auine)

S Mo, o
= Z |pt ¢ (LIp)Tpy Ty Foot Mot ) 404 ( B} / Fla

L=

= 3 | Fiow Migt) ¥4 A} f (32.1)

L=

where x on the left side selects those o on the right of the same partition. The
symbol (L1M7, Ly Mz | LM Iz the Clebsch-Gordon coefficlent for coupling two
angular mornentum states Lo A4y and Lo Mo to a total of LM The i¥ coefficients
are included for the same reason that they are in Bq. (3.1.9): to make the wave
fanctions 4det( Ry revert to the standard Coulemb functions £1(7, ke Be) in the
absance of a nuclear potential

In the S (channel spin) basiz, the wave functions for given Jiop Mior are anale-
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gously

VI RnnE) = 3 (Vi) @ [¢(6) @ E(E]

LI 8l kot Mect

X gt Ry )f R

Z |zt Lilp, L) S, Jock Mot ) ’%ﬂ';m(RmNRw
g

= Z |5 Feot Mat | ’%ﬂ';m(ﬁm)fﬁm (32.2)
=

whare 7 is the set of quantum numbers {zpé, LL LS}, and the sum over & on
the right side is restricted to those with the same x value as on the left. Partial
waves in the channel-spin basis are often labeled by 25+1L ; for example *F,
for 5=1, L=1 and Jpr="2.

There iz 3 unitary transformation between the radial wave functions in the 8 and
Tbases for a given partition o

YE(Fa) =3 (Blo) Y2 Ra) and 0= (Ra) = > (0|8} 4= (Ra), (32.3)
. 8

where the transformation matrix elemeant, the same for all Fo, is

(o] @) = \'/(25+1j(2Jp+1) W (L IpdiotTs; 7p5). (32.4)

The symbeol Wiabcd;ef) iz the Racah coafficlent of angnlar momentum recou-
pling theory.

The systemn wave function for a given Jup My 15 2 superposition of all parti-
tions, as

Tt =S oMot =37 (o T Micy) 954 (Ra) f Ry (32.5)

L=

where now the o sum iz unrestricted. This wave function Ei":’“ can be written
ag a function of the coordinates (R, £p,£:) of any single partition, because the
coordinates of each individual partition enable a complete set of basis states to be
defined. Mote that by writing BEq. (3.2.5) we are pot assuming the basis functions
in the ssparate partitions are orthogonal. In the subsequent development, we will
be careful to keep any terms arizing from channel non-orthogonalities.

Limiting case of pure Coulomb monopole potentials

Since the one-channel wave function 4 R, &) reduces to a plane wave i the muclear
potentials are zero (as then %z = FL), so should the total wave function P when
summed over all total spins and projections fuop M. In the omlti-channel case,
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the plans wave a5 an initial state must be supplemented by the m-quantum numbers
of the approaching miclel. A total systern wave function must in the free-field lmit
raduce to

T (R, gy Sriks) = @R (608, (61) (32.9

for a projectile in state p and target in state ¢ In partition =, m-states pp and iy
respectively, and initfal mementa in the c.m. frame of *k;.

Summiing over Joo M, with ruclaay potentials

When scattering potentials are present, the total systern wave function 11' tﬂ Fwill
contain radial wave functions g{.lim different from the Coulomb A7 ﬁ.mx:tmns, and
for initial m-state projections f,, and gy, for the incoming nuclear states =;pgé;, it
will be a sum over all Jpop Mo that generalizes Bq. (3.1.57):

Zu“i‘ete I:Rm ‘Ep: ‘Etl 'E-) = Z i{rﬁt‘h(R‘z ‘Ep: ‘Et)

Jeat Moz
dir
- Z L; (k) Z (Les My Tpy iy | T 0 ) (T g 00 Tt fi | oot Mo )
LM T o

(32.7)

in the T basiz, for an incoming plane wave in direction k.

We now combine the indices z;p;f; with the L; and Jp, of Bq. (3.2.7) to form
a new value for the multi-index, o; = {mpsts, Lilp Jp Ib, b This ldentifies the
partial-wave channel in which there iz an incoming plane wave, so the omlti-
channel radial funetions will henceforth be labeled also with o, as gﬂjg;(ﬁmj_
The a; subscript describes the Incoming channel, and & the outgeing channel.

The @i’{;f:h therefore depends on oy, called the mcoming chomnel, so to make
thiz depandance explicit we rewrite Bq. (3.2.7) as

11,""’?1 , 'ﬁﬂ'ég:(ﬁm) et Mice .
Py (R, £py £a1 Ky Z Z|CE.anthat} TA“W“‘*’ (s Ky)

Jrow Muon ooty

(32.8)
whare we define an ‘incoming coefficient’
Ai;ﬁm (org k) =

dar
S VM) (LM, Tt T (Tptey T ook Mot} (3:2.9)

Here and elsewhere, the sum over oy is not over all possible channels, but over
just the partial waves that include the Incoming state Indices xyp;f: defined by the
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properties of the beam projectile and target. Similar expressions can be derived for
the & basis.

It iz by means of thiz expansion with the incoming channel index r; that we
determine the boundary conditions and scattering amplitndes below. Inall channels
e # tx; there should only be outgoing flu 12

Farity

Muclear and Coulomb Interactions do net change parity, so that each projectile and
target state has a specific parity Wop and wm. The parity for a partial wave L iz
(—1)&, so the total parity of a partial wave channel is 7 = {—1)%m ;. This
mst be the same for all partial waves, since parities are not mived by Coulemb or
miclear couplings.

This also means that coupled channels sets for a given Jy; can be subdivided
Inte posithve and negative parity subsets, and each subset calculated separately. We
will therefore label coupled-channels sets not just by Jop but by J,, and sums
over Jyp are rewrlitten as over JL,. The parities will therefore be recombined in
sums like that of Bg. (3.2.8), whare the first summation is now over { Jiog, 7, Miot }-

Multicharnel 5 matrix

The 5-matrix element of subsection 3.1.1 iz now generalized to a full matrix S;‘g:“
for each total angular momentim and parity 7, where oy Iz the partial-wave
channel with the incoming plane wave, and o Iz an cutgeing channel

This means that Bqs. (3.1.6, 3.1.84) are generalized to depend on the entrance
channel o, and from Bgs. (3.2.6) and (3.2.8) we obtain for A, > HAa:

J _ iy + J
WIE (Ba) = 5 [ HE Ot ke B} B, — HF (e HaB) 82257 (3210)
The 5 matrix Si‘;’:“ gives the amplimde of an cutgeing wave in channel o that
arises from a incoming plane wave in channel o, In addition to the acattering from
12 T copfimm the meaning of the mulb-chamel formalizm, we brefly outline how it reduces o the previcus
one-chanpel theory of Section 3.1 in the cae of smmchmeless spin-zaro partices interacting only by sphedcal
elastic. potentials. The only non-zero 'qIIE:E‘i“: (It} for partial wave L will then be
Vo (B) = x2(R)
fora = {111, LOL0}. The coly noo-zre '-I-li'&:,:i‘t (R, &p,Ex ) are
O (R Epa &) = VP (R) 22 (RYER,

and the coly Don-zem ‘I-'igfiliﬁm,nﬁp,&;k} are
4
TH) (Rofp, e k) =9(R; k) = % 3O¥M(ly O (R, L),
LM

whe ( Fi; k) i that of Eq. (3.1 57).
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3 diagonal peint-Coulomb potential. Fer all the non-elastic channels o # o we
hava

YL () “E HY (a aﬁm) o e (3.2.11)

which iz to be propeortional to a purely outgeoing wave. When o = oy, BEq. (3.2.10)
leads to a matching equation similar to Eq. (3.1.37) for the elastic channel.

The cross sections, we saw In subsection 2.4.4, depend on the channel veloc-
{y!® multiplying the square modulus of an amplitude. It is therefore convenient to
combine these velocity factors with the 5 matrix, by defining (for sach Jpopm)

Kt
ccti _asaa,g' (3?.].2}
Y Yoy

where the velocities satisfy u,v, = Ak, The combination S matrix Qmé may
now beusad to find the mnlti-channel cross sections, and its matrix elements may
be more directly found from the boundary cenditions of Bq. (3.2.10) expressed as

er'm-(Rz) [HI:_(T;.IQ, hoFln) Oy — HEI:T;'Q, b Flz) %/ZEQ;::W]
“ (3.2.13)
Both S5, and Sm can be regarded as complex mimbers In matrices 8§ and S.
The second (column) index in these matrices refers to the incoming channel, and
the first (row) Index names the exit channel
We can also define a partial-wave T mattx by § = | + 21T where | iz the identity
rmatrix 14 or

[ ]

Soc; = fna + 21T aq, (3.2.14
gmé = aaag' + giTméj (3.'2.].5:)
noting that the velocity ratios in BEq. (3.2.12) are unity for the diagonal matrix
elernents, so the diagonal terms &, are not affected.

In terms of these T-matrlx elements, the scattering boundary conditions of
Eq. (32.10) are simply

PR Fo) = Fr (T kBl ) Gy + Hi (o RaFl) TR (32.16)

Multichannel cross section
The scattering amplide from an Incoming elastic channel (zp;t;) to (zpt) de-
pends on the m-substates of the Initial nuclel iy, p4, and the final nueled gp, fis, as
well as on the scattering angle &, as fﬁfﬁd i, | 0] We use the scattering ampli-
tuda f caleulated from the §-matrix elements, so that, in contrast to Eq. (2.4.14),

1% eiictly a speed, but this i the mestcommon temminology.
14 9 will often write 5 = 1 + 2iT for simplisity.
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there are no further velocity factors for the fiux ratio. The cross section for an un-
polarized beam, where all fip, i3, values are equally likely, is thus found by using
Eq. (24.10), then summing over final m-states and averaging over the Initial states:

@ 3217

1
7=t 8) = or T, ) #22 pbt dipy

iy e
By Eq.(3.2.16), in addition to the incoming wave in channel oy, the 4 J“”(ij
have outgeoing waves, which in the external ragion becoma

Jmt.irr(RI) Rzl HF (m, aRI)TJt.\:t;JT Rogo j—Le en’ﬂuRmTitg!mr, (3.2.18)
and the B[R, &5, & ki) have cutgeing waves proportional to the scattering am-
plitude as

Fozfin gomt o (816472 Ry

(3.2.19)
Using Eq. (3.2.8), we may determine the scattering amplitndes f(#) in terms of
the T“F"C'“'JT for scattering from a beam in the k, direction to the asymptotic k = R
d.]rectmn differing by an angle 8:

':: I?#?(‘EF)qéffm(‘Ef)leipfh I:R'E ‘E?J':‘Etl )::'

f#ya#-:,#ﬁ#-: (6) = Z Zl_L ¢‘ ¢rf;¢1|fl Frot Mot )

Jeobm Meon ooty

x Ajeiten(og k) Toa™,  (3220)

where the o sum 1s over partial waves consistent with the cutgoing xpt, and the oy
st be consistent with the Incoming beam specification =;p,%;.

We include the flux factor of Eq. (2.4.14) by using T instead of T, to now give
F.and expand the | state and the Afcy;ke) coefficients, cancelling the i¥ factor.
After also Inserting appropriate Coulomb phases as in Eq. (3.1.88) and adding the
diagonal pure Coulomb amplitnde fo(#), we have a general scattering amplinde
for Coulomb + nuclear reactions

f#gpm g e (8] = #-p#-p., E'mm Oaptzipity JolB)
dqr
+? Z ':L'iMI:i: Ipéﬂ?él"r?ém'i}
L LT JomgmM; S
(oM oy fi; [ Foor Myt ) (LM, Tppip|Jprmt) (Tpry Tpie [ Fooe Mice)

Y () Y% i) Toa™ ebntmeiton (ad (3:221)
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and in the 8 (channel spin) basis

f#ﬁaﬁf Fopgg By ':'9) #-p#-p.;- E'mm_,- E'zpt,m@pm fc(ﬁ')
dar
o Z (Tps bty Tagping | 534 )
¥ LiL8:8m0;M; T
{L-M:S.S.JJMM,;D,;}{ bty Teft| S ) (LM, 55| Ty Mic)

YL (k) I:k ) ..Fr.ot.‘rl' 1[0'1, (mgi+or,(ns, :l] (3.2.22)

Mote that T"Fmr"JT =1 [Jmé—gjm?w], and similarly for the S basis.

i QLG

Polavized beams

In general, cross sections depend on the polarization of the beam, namely on any
non-uniform distribution over initial m-states wp, forthe projectile of spin Ip. The
properties of amy beamn are defined by its density matrix operator g, whereby the
expactation value of any operator & is given by the trace

I:F‘
(O = 3 o) Tt |01 o) (3223
tpgith =—TIp
= Tr(50). (3.2.24)

The polarization properties of the density operator for the beam are usually rep-
resented by complex numbers tg  for @ = 1,2, ..,20, and 0 = ¢ = @, according
to the construction

- 1 .
# &g

where the spherical tensor g, is the operator with matrix elements

(FQq)pet = v 2041 {Tppi, Q| Lpit'). (3.2.26)

The degree to which the beamn peolarization is reflected In the observed cross sec-
tion G"Pz;'tl(ﬂj for any reaction channel zpt is given by the tensor analyzing powers

Tgf for this reaction, according to

oEo(8) = Oam(0) > 20, T (3.2.27)

where Tom(#) Isthe cross section of Bq. (32.17) for an unpoelarized beam.
These tensor analyzing powers can be caleulated from the scattering amplimdes
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=t .
Tt st 18] 25 the ratio of traces

77 () = Tr(f7g,f*)

T (3.2.28)

QQ_I_]_ Z#‘P#‘#‘Pﬁ#’fi f#ﬁf*#?i#fi(a){ F#’Pq!QQ|IFJ[Lp.!} #‘P#’fﬂ' 5 H I:ﬁ)

Zp:?p:.t#w |f,l'-'5-p.l'-'5'1! g P (ﬁjlz

For a more complete description of polarization, see Gémez-Camacho and Johnson

[LO].

Integrated cross sections

The angle-integrated outgolng cross section to a non-elastic excited state palr xpt
iz

T
Tt = wa B SN 6 T (6)
1

kil t.cut.‘JTg

=2 S @) (3229
RO @), 2
T Jonm

== 2. gwalSaE T (3.2.30)
T e Ldo

whare we have abbreviated a spin welghting factor to

BFpe +1
Bl =

T (2L H1(25,4+1) (3-2.31)

The rection cross section g is defined as the flux leaving the elastic channel,
and depends only on the elastic S-matrix element S, as

T 1

= Wit +1)(1 — |S 2o 3232
7R sc?-(zr D25, ) D (2 tl)(1-18527F) 623
t.\:ht.':'Tai
- Z g-fmt.(l - Simwl :J similarly.
T’ Jpon o

Remember that the sum over oy 13 over just the partial waves that include the in-
corming state indices #ypt;, and that for elastic channels S, = Soye,-

The integrated elastic cross section Is defined only for neutral acattering (x = 0),
and iz a generalization of Eq. (3.1.50):

T 1
Fc?' (QI ALI(2,+1)

> (W +1)L - S2emE (3233

Jpanmoes

Jal =
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It measures all the flux being elastically scatterad by any non-zere angle. The tetal

cross section iz the sum of the reaction and elastic cross sections:t®

Tt = TR + T
T 1 A
= E(EI TTi(3L, 1] E (QJth-I—lj[l—ReSaéaé ], (3.2.34)
; - )

Juob e

and is the sum of the fluxes leaving the incldent direction for any reason: elastic
scattering to ancther angle, or a reaction leading to any non-elastic channal

The absorption cross sectlon Is the loss of flux caused by any imaginary poten-
tials in the Hamiltonian. In mouoltl-channel theory, we calculate it as the reaction
cross section mimiz all the non-elastic cutgning cross sections:

T4=OR— 3 Oam (3.2.35)
Tt Emipiti
This reduces to the remult of subsection 3.1.5 (namely o4 = or) when there are no
non-elastic channels. With mltiple channels, i the coupled equations are solved
precisely in the presence of absorptive complex potentials, then o4 will be positive,
and will as before be an integral of W{R) < 0, now

a4 .
=g O | FWAERN R R, G239
® 'E’Jmmra,g'a

3.2.2 Compled equation:

The mmlti-channel wave functions of Bqs. (3.2.1) and (3.2.2) contain the channel
wave functions i, (Hz) or ¥5( fz ). In order to find these wave functions, we have
towrite down the coupled equations that they satisfy, starting from the Schrédinger
equation for the whole systern. Chapter 6 will show how to solve the couplaed
aquations that we derlve In this section.

For total energy £ and Hamiltonian operator H, we have to solve

(7 — BlpMe — g, (3.2.37)

Jbab T

The results will be independent of A, when H Iz rotationally invariant: when H
does not depend on any particular direction in space.

The total Hamiltenian H can be written equivalently for each partition =, In
terms of that partition’s internal Hamiltenians, kinetic energles, and interaction
potentials:

H = Hop£p) + Hnl(&e) + To( ) + Vo B, £p, &), (3.2.38)

1% Mote that the brm “total @oss section’ has seveml meanings in the litranre. Somebmes it mfem o the
angle-integrated croes ssction of Bq. (3.1.50), but the term is best kept o mfer o that of Eq. (3.2.34).
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where Vo Ay, £,y 8) — 0 as B, — oo,
The internal nuclear states qi:?:(cfp) and ;rf(c'fz) satisfy elgenequations for thelr
Hamiltonians

Hm(fquﬁ?:(‘fp) = Empqﬁ?:(fp):
Hwt(fﬂﬁf’f(fﬂ = Ezt'i’?f (L) (3.2.30)

for eigenenergies ez and e respectively.?® The kinetic energy operator depends

on the masses fipp and 1y via the partition reduced mass iy = Maptiles /[ Fiaptiiet)
as
ﬁz

T () ==

Vi, (3.2.40)

The interaction potential V( F,, £, £;) is the residual interaction between nuclei p
and £. For nucleons ¢ in the projectile and 7 in the target, it may be written as the
sum

Vo Fony &) = 3 Vig(be — 1) (3.2.41)
tep.yEt
of individual micleon-nucleon forces V. When the distance R, between p and ¢
becomes large asymptotically, the residual interaction goes to zaro.

For convenlence, we define a foint projectile and target Hamiltonian as Hy =
H., + Hp, a joint eigenstate as ¢°F = qi:’;:qﬁi;'f, and a joint eigenenergy as
€xgt = €xpteop, 50 we have simply Ho¢™ = e,me™ for the product of in-
ternal structires. The total Hamiltonian isthen H = Tm + H. + Vy for any chosen
.

The coupled equations are now found by expanding the total wave function
‘Ilf,i =t in either the § or T partial-wave basiz. In the T basiz, for example, p M

LT Jbab T

o |2 Foct Tl ) /Ay, s0 from By, (3.2.37) for a given Jiopm value, we hava'®
> [H — Elle Aamal(Re) {Rn = 0. (3.2.42)

L=

Projecting onte one of the basis states, by operating on the left by R (o],
> Rulod|H — Blo) Ry 4,(Rs) = 0, (3.2.43)

abbreviated as > (H-E)ata tal Bz) = 0, (3.2.44)

L=
which gives a separate equation for each o combination of quantum nurbers. The

18 9% omit the wm-ztate quanim mumbers from thiz equation zince the energy docs not depend on thess
17 The M., haz been cmitted =ince the resuls should be the zame for all M, values, and nowr e will oft=n
omit also the Jpopm labels, and the incoming chammel label o, when dissmesing a given coupled chanpels set.
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set of all the equations for various of iscalled the set of rouplad channels equations.

The Hamiltonian and energy mmatrix element was abbreviated by {of |[H — £|o) =
(H— B ain. Toevaluate all these, we note that

[H - E]la:' = [H - E] |Z‘pt : (LIp)Jp:Iti Jb\:nt?r:'
= [Te + Hz + Vo — B] |2pt : (L) gy It Foop)
= [To + €op + o + Vo — E] |zpt : (LL) Ty, L Jyoy)
= [T + Vo — Bum] |2pt : (EIp) Jpy It} Fooe), (3.2.45)

where Bom = B — €55 — €4p Iz the external kinetic energy for a given excited-state
pair &pt.

This means that the matrix elements {of |[H — £|o) may be written in two ways,
one by replacing H either by Tm + H, + V, for acting on the right hand side, and
the other by 'f'zr + H,: + V.« for acting on the left slde. The first option iz called the
prior form of the matrix element, and the second the pestform. Tdeally, If all terms
of the coupled equations are Included and the equations are solved accurately, both
choices will give the same results. *® The prior form of the matrix element iz thus

(H— By = Bprled [Ty + Vi — Ep|o) BT
= Ruio'|o) By [Tor — Bam] + Rarlo! [Va|o) RS
= NatalTor(By) — Eop] + VE" (3.2.46)

afer )
where the partial-wave kinetic energy operator, the same as the one-channel oper-
ator of Bq. (3.1.10), is
pEt [ g® Ly(Lo+1)
2pin | ARE R ,

where Ly 1z the orbital angnlar momentum in channel e, The coupling interactions
berween channels are either the prior or post matrix elaments defined as

Tor(Fa) = (3.2.47)

VERT = Rolof Voo B (3.2.48)
Vi = R (o [Varlo) S (3.2.49)

respectively, and the norm overlap operators between the partial-wawve basis states
are

Nopig = Baelo |o)RT (3.2.50)
Within the same partition, #* = =, the norm overlaps are diagonal: N = G-

1% Op page 10l we will =z that there iz alzo a simpler fimt-order rezult, whemby that post and prior forms
Decemzarily give the same fimt-order mnzition amplimdes.
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This suggests treating the matrix elements of T.p — £y Within a partition sepa-
rately from those between partitions.

With these definitions, we have from Bq. (32.43) one version of the coupled-
channels equation set:

[T ’L(Rm B p"t"]’ﬁ.ﬂ'a"(ﬁm + Z Vpﬂ'mrwa :J

+ Z P:Fa"a[j;fr_ Zﬂ]wﬂ(ﬁﬁ):m
ot mete’

which, on interchanging primes and the unprimed, gives a perhaps more natiral

[For(Be) — Bopltal B} + Z Ve e Flat

+ 3 RawlTon — Borpw e (Far) =0, (3.2.51)
ol mier
The third terms in these equations are called ron-orthog onality termis because they
irvolve the overlap of basis functions {of|a) between different mass partitions, and
arise particularly in transfer reactions. We will see in Chapter & that they may be
neglectad in some circumstances, which would allow the coupled equations to be
written in the more familiar form

[Tor(Fz) — Bagelthal Fz) + Z V(R ) = 0. (3.2.52)

The equations (3.2.51) used the prior forrn This may be discerned from the
fact that the interaction petential Vi in the coupling matrix element VI =
for |Vt | ") refers to the fuitiel channel of rather than the finalchannel e, The same
solutions should also result in the converse post form matrix alement, obtainad
when BEq. (3.2.44) is replaced by

(H—E)ata = Azl WTZ’ + Vo — Z“p“¢“|a}R;1
[Tszf - zp“t“]N o+ T}cl:‘;cgt' (3-233)

The detalled construction of all the coupling peotentials (whether post or prier) s
the subject of Chapter 4.

3.2.3 Unitarity af the mulii-channel S matrix

The multi-channel § matrices 8,5, and Qmé, for each total angnlar momentum
and parity JiL,. have certain symmetry propertiss when the initial Hamiltonlans
have specific features. These concern physical properties such as Hermiticity, time
Iirvariance, and what is called reciprocity.
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It may be that the couplings V., are Hermitian, that is ¥ = T?;, o \whether
post or prior). This is tme i the coupling matrix iz real and symmetric, but also
hold mere generally for self-adjoint or Herrmitian couplings. Hermitian operators
should be familiar in quantum mechanics since they have real eigenvalues and thelr
aigenvectors form an orthogonal set.

For scattering, the consequence of Hermiticlty iz that the matrix 8 e ,of Bg. (3.2.12)
is unitary:

§ =8 =817 (3.2.54)
efg _ ¢ : :
:0 §'8 = 1. For oy, of as two Incoming channels,
Z E;ai gaag = aa.z-a"!f: (3.2.533)
L= 3
and, in particular
> Banf =1, (3.2.56)

L=

Each row of the § matrix is therefore a vector with unit norm. From ng =1 we
can similarly prove that each column is a unit vector

Unitarity implies that the absorption cross ssction of Bq. (3.2.35) s oy = 0, s0
that the reaction cross section (the flux leaving the entrance channel) Is precisaly
aqual to the sum of all the outgeing cross sections.

3.2.4 Detaled balance

The condition of detalled balance In a general statistical or stochastic system In
classical physics 1z said to hold when the forward and reverse transition probabili-
tles are equal for sach transition. The transition probabilities in the present context
are the square moduli of the S-matrix elements, which properly sum up to unity
in the unitarity limit of Bq. (3.2.56). We therefore define as the detailed balance
velation the equation

Bece ! = Sl (3.2.57)
which malkes all the forward and reverse transition probabilities equal
This condition helds for the solutions of coupled Schrédinger equations if the
forward and reverse couplings are identical, with the samne magnitnde and phase,
narmely that coupling matrix T}mr = T}ara Iz symmetric. In this case, we have a
somewhat strongar reciprocity condition where tha § matrix itself is also Symmet-
rie:

§=§" (3.2.58)
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This will be proved not here, but In subsaction 10.3.2, where we give an explicit
construction for §. (MNote that it is § of Eq. (3.2.12), with the velocity factors,
which iz symretric, not the original 8§ matrix.) This symmetry Is sufficient for the
detailed balance relation to heold.

We may also use the coupling matrices defined using the multi-channel wave
fanctions of subsection 32.1 which are mot symmetric, because of the 1% factors
in Bq. (3.2.1). If these factors are used, the coupling matrices will satisfy rather
Vo = (—le_Lf‘L}ara, as also do the § matrices, but this is still sufficlent for
detailed balance, Bq. (3.2.57), to held.

The symmetry condition (3.2.58) Is distinet from unitarity, but real symometric
coupling matrices lead to both unitarity and symmetry of the § matrix. Harniltoni-
ans as commeonly used with complex potentials cannot be unitary, but can almest
always be made to have symmetric matrix elements. For more discussion about
unitarity, time reversal and reciprocity, see Taylor [3, §6-2, §17-2] and Satchlar[11,
¥4, 50.5-0]

The above reciprocity results can also be proved for potentials that are time-
reversal mvariant. Complex potentials, however, never satisfy this condition, but
still lead to reciprocity, which is hence true more generally than just for invariance
under time reversal.

From the detailed balance of the § matrix of Eq. (32.57), we may derive a direct
connection betwean the total cross sections for the forward and reverse reactions.
From Eq. (3.2.29), the cross section from entrance channel z;pt; to a distinet exit
channal xpt is

T 1

R
TEtmipit FL‘E (gfpé+1)l:gft¢-+1) ': [{al] )l oot | '; ;'

Job oot

The detailed balance |8, |° = [Saee|® implies that the equivalent expression for
the reverse reaction Tnp s, =, from entrance channel zpt to exit channel wqpit;,
satisfies

EE2L A1) (2T A ) Ozt = K2 (2L 2B 1) O o, (3.2.60)
50

- _ Fcf(QIpi+lj(2Iﬁ+ljg
mipitammt — e (grp_l_l ) I:QIH—I) mE Pty
This equation iz therefore called the principle of detalled balance. The Hermiticity

of the Hamiltonian leads to unitarity 5 matrices, but that by itself is only sufficient
for detailed balance between the cross sections if the couplings are also real or can

(3.2.61)

be made real by a unitary transformation.
A slightly different expression helds for photen channels. Although we will
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see In subsection 3.5.1 that they can be consldered as spin 1 objects, the gange
condition implies that there are only two indepandant polarization projections. The
number of photon m-states is hence not (2s4+1), so this factor should be replaced
by the value of 2.

Anocther slightly different expression helds for 1dentical particles. If the react-
ing miclei in either the antrance or exit channels are identical, then we will 22 in
Section 3.4 that requirements of the Pauli principle dictate either symmmetry or an-
tisymmetry of the overall system wave function. Compared with Bq. (3.2.59), this
Induces an additienal factor in the way the cross section depends on the S matrix
elernents. This factor may be different in the forward and reverse channels, and
affect the detailed balance equation (32.61). These factors will be determined in
subsection 3.4.3, after izospin and (anti-)symmetries have been defined.

3.3 Integral forme

Instead of defining cross sections in terms of 5- or T-matrix elements contained
in the boundary conditions for differential equations, it is also possible to give
expressions for these matrix elements that are Integrals over the wave functions
with sorne part of the Hamiltonian. These imtegnel forms for the 5- or T-matrix
elernents should in principle yield identical results, but are useful since they may
suggest a new range of approximations that may still be sufficiently accurate in the
relevant physical respects.

3.3.1 Green’s funcéion methods

Up to now we have solved only homogeneous Schrodinger equations like [£ —
H|T = 0. Sometimes we may need to solve inhomogensous equations like
[ — H]¥ =  with outgeing boundary conditions, for some radial functions
(U A) called source terms, as such equations arise as part of a coupled-channels
set. The inhomogenous equation may be sclved by differential methods as dis-
cussed in Chapter &, but often it is useful to give an integral expression for its solu-
tion, and it iz especially useful that there exist simple integrals giving directly the
agymptotic cutgeing amplitude of the solution, namely its T-matrix element. This
saction shows how to use Green's function methods to solve the inhomogensous
differential equation.
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Dategral solutions of inhomogencous equations

Consider the general problem of solving the coupled equations similar to those of
Bq. (3.252)

[TZLI:R) + T{:(R.‘J - Ezpt]wa(R) + Z{alVla"}ﬂ'a.-I:R'r) = 0. (3.3.1)
ot
for some given total angular momentum and parity Jp, and incoming channel oy
that we assumme are all fixed, and not always wtitten among the indices. Here we
have separated out the point-Coulomb potential Vil ) = Zpp Zme® /R (if present),
and put all the other couplings, local orneon-local, into the matdx elements of ¥
The solutions must satisfy the standard outgeing boundary conditions of Eq.
(3.2.13) for the given ;. Suppose that all the i R") are known for which
{ee|¥7|ay # 0, in which case we may solve the inhomegeneous equation (3.3.1)
for the wave function 4, ( i) using the known source term

Dl B) = 3 (e|V]e! 1 (R). (33.2)

This is to solve the inhomeogensous equation
B — Tor(B) — V() al ) = DalF). (33.3)

The outgeing-wave boundary conditions from Bq. (3.2.13) may be written in the
T-matrix form of Bg. (3.2.16):

Bz, () = P F) oz, + HI(R)T e, (33.4)

where we have reinserted o as the given Incoming elastic channel. The Tog, Isthe
muclear T-moatrix element for scattering in addition to the point-Coulomb peotential
We confirm that in the limit of ¥ = 0, when QI5(H) = 0, only the the elastic
channel wave function is neon-zero with value 4o, () = £ (F), and Taq, = 0.

Definition of (R, F')

Lat us use Green’s function methods to find the outgeing solution of the linear
equation

24z

22 0u(R), (33.5)

e~ O+ 2] vt =

where U( K) = 2nka/ B4 La( La+1)/ R® is the surn of the Coulomb and centrifu-
galterms, and k% = Bu, £, RE

Mow the general source term Ol ( i) can always be formally written as a super-
position of selutions for d-function sources §( B — ') at B/, since

(. (R) = fa(R— R0, (RAR (3.3.6)
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Thus all we need iz the selution, a function of R, of Bq. (3.3.5) for a d-function
source at &, We dencte this solution by G+( R, R'), since it depends on both R
and ', and it is precisely the Green's function G+{ F, R') satisfying
&
15~ U@+ sc;] GH(R,R') = &(R— R"). (3.3.7)
The desired solution is therefore a superposition of all the G+ (R, B') with am-
plitndes corresponding tothe magnitude of the source term at £Y, namely %QQ(R’ 1
This will give the wave function in terms of the Integral expression
_ 2& + ’ ’ ’
Yol B) = o FulB) + 22 | GHE, R)Q(R)AR, (339
since the homogeneous solution £,(f) iz present only in the elastic channel. This
equation iz often written mmore compactly in operator notation as

Yoo = Fo+ G ey (3.3.0)

where 3+ is defined as the Green's integral operator that has the kernel funection
Dpin fAE GH( R, B'). Furthermore, because G0l s the solution 4 of the differen-
tial aquation [£ — T - Ui = Q1 with T'the kinetic energy operator, the Green's
operator with the Coulomb potential T, can be written as

Gtr=[E-T-0]? (3.3.10)
with the specified cutgoing boundary conditions. Bq. (3.3.9) can therefore be writ-
ten as

Yo = Fa+ [B—T— U] 0. (3.3.11)
To find G (A, A’
For fixed B/, when B # R’ we have from Eq. (3.3.7) that!®
4 ,, z| A+
1z~ VRN RN G (R, K} =0. (3.3.12)

Since thiz iz a second-ocrder linear differential equation, any selution st be a
linear combination of two fixed linearly-independent selutions. We choose for
these the regular Coulomb function £{f) and the irregnlar function H +(R) for
thiz partial wave L. With thiz cheice, the unknown Green's function mmst satisfy

G¥ (R, B') = f(R|F(R) + h(K)H*(R), (3.3.13)

19 9% aw dealing with jiet coe chamel = here, 50 up to Eq. (3.3 21) we may omit that snbecript for simplicty.
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where the coefficients f, & are as vet unknown functions of A Since these coef-
ficients are different for different B values, we now apply Eq. (3.3.12) separately
for B« R and A > A’ avoiding K = A’

To determine the B < B case, consider £ = 0. Any solution of Eq. (3.3.12)
st be zero at the origin in B, so G(0, &) = 0for &' > 0. Since H(0) # 0
and £{0) = 0, we conclude from BEq. (3.3.13) that A( £') = Owhen A < A’

To determine the & > R’ case, note that the & — oo boundary condition of
Eq. (3.3.4) implies that G (R, i) o HF (K). We conclude from Eq. (3.3.13) that
F(R') =0when R > A

surnmarizing the two rasults,

FIRNF(R) for R < B

W RVH*(R)far R > R, @319

) -

Tofix f(R'), h{R') we use the differential equation (3.3.7). Integrating this with
respect to K over the range from just below R to just above, we find

%G"’(R, R’)|R_‘Rf+ - %{G"’(R, Ry =1 (3.3.15)
so from Bq. (3.3.14) we have
h(E)HY(R) — F(R)F(R) =1. (3.3.16)
Now & A, £') is itself continnous over A ~ A"
W R)H*(R) — f(R)F(R) = 0. (3.3.17)

B0, solving Bgs. (3.3.16, 3.3.17) simultaneously, we have
F(R HY(R
(7"]4.: FlR) = 7('1.:
WF, H+) Wi{F H+)
whare Wi f,9) = fg' — f'g is the Wronskian for two functions f{ &) and g{ R).
For our £, H+, the Wronskian Wi H+) = W(F, &) = —k from Eq. (3.1.11}.

The full Grasn’s function is therafora

h(R) = (3.3.18)

+ _ 1| HYR\F(R)fr B < R
GTE ) = k {F(R’)H+(R) for A > R @319
1
= — F(R)HY(R;) (3.320)

where A = min{ A, &'} and R~ = max(R, &').
We wanted the solution of the original Inhomegeneous equation (3.3.3). Now
restoring the channel indices o and incoming index o, that selution is

2
'ﬁ'ﬂ'a(R.‘J = ECX.GH Fa(R) - ﬁ f Fa(R<)H;(R})ﬂa(Rr)dRr' (3-3-21;'
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At large distances A = meax{ ', B, ), wehave 9, () — 0nn, Fr(R)+Ton, H Y E)
from Eq. (3.3.4), so

iz
~ W
and we arrive at a very useful integral expression for the partial-wave T-matrix
elament:

Toa Ha (R) =

HZ(R) f Fo(R)Na(R)4R, (3.322)

_ 2 ’ '
Tox, = i Fo(R jﬂa[Rde'. (3.323)

This may be rewritten In Dirac bra-ket notation as

iy .
Tows =~z (F10a) (3.324)
= _ itz =)
= HZE (B 0. (3.323)

The complex conjugation in Bq. (3.3.24) Iz necessary to cancel the conjugation
irplicit in the matrix elements. A '~ superscript in the Bq. (3.3.25) is used for the
same purpose, for reasons to be explained on page 95.

In the operator netation, Eq. (3.3.11) may be rewritten as

¥ = p+ G0
= p+ GV, (3.3.26)

using ¢ to refer to the homogensous selution present only in the elastic channel,
and with the + sign indicating outgeing boundary conditions of Bgs. (3.3.4). An
equation like (3.3.24) iz called a partial-wave Lippmann-Schwinger equation, and
in this notation the T-matrix (3.3.25) is the integral

24

24
T=_2 _ oK
™

Rk

(@ V) f P RVV(RIW(R)AR. (3327

In the mmlti-channel forroulation, 4f and ¢ are interpreted as vectors (¢ being
only non-zero 1n the elastic channel), ¥ as a matrix, and G+ iz a matrix of integral
operators.

3.3.2 Vecor-farm T marix for plane waves

H the above analysis is repeated for every partial wave L in the spherical potential
case, then the resulting Tz, may be substitnted in Eq. (3.1.56) to yield the angle-
dependent scattering amplimde f(&). If Vi(R) = 0, for example, the ¢ are the
partial-wave compenents 570, kR) of 2 plane wave and the 4 are the partial waves
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¥ for scattering with the potential. Summing over L ghees

HOE —% me Y2 (k") Fr(0, k'R) V() Y (k) xo(R) dR.
P L

(3.3.28)
Then, expanding V{R)érrdpne: = f,, dR. YI‘}’I(R)V(RjYI‘j’F{(R) for a spheri-
cal potential, we have

16) =~y f dR P V(R) B(Rik) (3.329)
= — o RV R(R k) (3.3.30)

whare ¢ 1z the scattering angle from the initial momentum k; to the final momentum
k' (with |k'| = |k;|), and the bra-ket is a three-dimensional integral. This integral
formn is also called a *T matrix’, but iz one that depends on Initial and final k values,
not on partial waves L or o We call this vector form of the T matrix (as distinet
frommn the partial-wave form T), with the notation T(k’, k).
The vector form I matrix iz defined in relation to the two-body acattering am-
plitude as
FK k) = - 22Tk k), (3.331)

o we have just shown that for a plane-wave final state,

T(K, k) = (¢ F |V (R K)). (3.3.32)

3.3.3 Two-paiential formula

H a channel potential can be compesed of two parts V(R) = U1 R) + U i),
then it is possible to treat U7y as the distorting potential and ©7; as the remaining
Interaction. Then, using the T-matrix integral expression for the scattering from
their combined potential ¥, we can derive an exact twe-potential formuls Involving
the T-matrix difference betweaan U7 scattering and V oscattering. This difference
will be proportional to OF;.

For each partial wave, let uz define solutions ¢ for the free field, ¥ for T only,
and 4f for the full case, and use Bq. (3.3.26) to write down the corresponding
Lippmann-Schwingsr equations:

Froe: [B-T]e=0 Gf=lE-7*  ¢=F
Distorted: [E-T-Wh]x=0  x=¢+GUix x— ¢+ THHET
Full: [B-T-U -y =0 y=¢+ é;(U1+U3:I1§'J Yo— g+ T+ g+

From Eq. (3.327), the T-matrix integral A = — 2 (=171 |5} describes the
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scattering fromn 7 only. Similarly the T matrix T4+ for the combined potentials
Ly 4+ TFy satisfies

k)

= f(x — GFThx)(Th + Ul AR
= f [X(U1+U2)’§t’-' - (éS-Uﬂ‘()(Ul-I-UZJ’w] dR. (3.3.33)

Because the kernel function of Bq. (3.3.19) for the operator G is syrnmetric under
R+ B interchangs,

HEk
_tEy

- (14+2) fbf(tfl + Uzt — XU GF (T + Ug)f] AR

= fb{liUl + Dzl — x Uy — 'i’)] df

= f[ﬁf’UlX-l-XUz’%l’-'] dft (3.3.39)

= (Te) + (7 [T e (3.3.35)

MNote that in Bq. (3.3.34) the two terms in the integrand are products of three com-
plex functions, and the preduct order s unimportant. In Bq. (3.3.35), by contrast,
the functions are no longar interchangaabla.

Thus T+ = 7@ 4 T2, dafining an additional tarm

T — _%fxyﬂa dR (3.3.36)

ag the scattering T-matrix contribution from coupling &7, with T appearing as a
distorting potential in 3. The previous equation (3.3.35) 1z called the tweo-potential
formula, and iz an exact equation for both real and complex potentials 77, If.

We use the (- superscript to indicate complex comjugation for the left-hand
wave function, as In Bg. (3.3.25). The reason for this neotation can now be ex-
plained. The »* satisfies a boundary condition with an ieceming boundary condi-
tions for all the asymptotic parts in addition to the plane wave. Since externally

x = F + T HY S amikR) + TW o*F (3.3.37)
wehave x* = F* 4+ THEY L am(er) + T@Fe *8 (3338

where T is the scattering from the potential 771 (R) that defines the homogeneous
functions x(H). Thus x* iz asymptotically a plane wave plus some cosfficlent
mmltiplying an isceming spherical wave e~ and hence is frequently written as

X
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The exact wave function 4 is the solution of the implicit equation
% = x + G e, (3.3.39)

using G"‘ = [£ — T — U1] 7! with outgoing-wave boundary conditions. The first
term 3 represents the contribution present if &7; = 0. By methods analogous to that
of subsection 3.3.1, the @i" oparator has the Integral kernel

- 1
GY (R, B) = =2 x(Be)x (R, (3.340)

whare 3 T( ) iz the new irregular solution of [E—T"—T4]xH(R) = 0 that equals
H*(R) everywhere outside the range of T ( ).

3.3.4 Vector-form T matrix for dictorted waves
When the distorting potential £ (A) # 0 1z spherical, lot X(R,; k) be the system
wave function like Eq. (3.2.1) obtained by solving the Sclrédingsr equation with
that potential, and with Incident plane wave el R The two-potential formmla of
Eq. (3.3.35) will now give the vector-forrn T matrix for the additional scattering by
potential &z, namely

T(K', k) = (X (R k)[R k), (3.341)

where we can show that X~/ R; k') = X(R;—k')*. The X'~ has thus incoming
spherical waves In Its asymptotic boundary conditions, in addition to the elastic
plane wave. The scattering amplitnde f 1s still related to T by Eq. (3.3.31).

In the multi-channel case, we sum over all coupled channels setz AT, and fol-

lowing Eq. (3.2.7) constict the wave functions ‘I'#?“ mits | Flz kg for the potential
T + Uz with coupled radial functions e, (f-), and Xz"”;:ff(ﬂmr, k) with un-
coupled radial functions xR, ) for the spherical potential &7 only. Both depend
on the m-state projections of the nuclel in the relevant partition. The vector-form

T matrix, in thiz ganeral case, is now

Tﬁpi’#‘t" g Mt I:k'r :J

2w et
g Hpt et (=] .
= (X P (Rt W)U R (R i) (3.3.42)
= 3 > Ageieol K A o k) Y et [T ) (3343
ot Mo otfoe; ot
R ke Jrot M £k A Fuon M Jooe M,
= — Qﬁa, Z Zﬂﬁzhfm(af k:]“ﬁl 7=11 t.ot.(%l )T t.cut. Lok (3344}
Jrop Mo otfc

whare the Aﬁ;ﬂ”f =t o k) are given by Bq.(3.2.9). This last equation gives the gen-
aral mmlti-channel relationship between the partial-wave matrix elements T,
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and the vector-form matrix elements Tk, k; ). Note that the wave mumber &, and
raduced mass fi in the final channel are entirely determined by ='p¢’. The final
equation helds generally; also when U7 1s non-spherical and the ¥ e Fon) are
thus solutions of a set of coupled equations.

The EBq. (3.3.44) also vields ancther expression for the nuclear-only scattering
amnplitnde in terms of the partial-wave T-matrix elements:

=t . _ Mo Tﬂ?m:#ﬁmé
f"’?“*»‘*ﬁﬁié(k'k’i)_—gwﬁz ot mipits (k, k)
k Jrow M Jrot M, e M,
= D, D Aumle(ak) Ao (o) Tog e (3.345)

Jrok M o oot

3.3.5 Born series and approximaions
Cne-potential scattering
For a fixed potential T7( F), solving the Lippmann-Schwingsr equation % = ¢ +
GEI" Iy should provide an exact solution for the wave function x with potential 77.

This howeaver Iz an Implicit equation, as ¥ appears on both the left and right sides.
To find it explicitly, we could perhaps sum the iterated Beorn series

X = o+ GiUR+GIUR+GHU[ 1]
= p+GIUd+ GIUGT U+ CIUGTUET TS+ -+, (3346
fromn which the outgoing amplimde T = — %{qﬂ:‘i_:‘ |EF |7} 1s

2 -
T=- ﬁT“‘; [{¢E—F|U|¢:} +{TNUSTU8 + ] : (3.347)

The equation (3.3.44) may be llustrated by Fig. 3.5, where each node of the graph
iz an action of the potential &7 and each line a propagation by @;‘ .

H the potential T7( K) iz wask, In the sense that we could treat it as a perturbation,
then we might truncate these series and still achieve sufficlent precizion. The first
term in BEq. (3.3.47) is called the plane wave Bove approximation (PWBA):

2
TS = (I e). (3.348)
This PWBA, when written explicity with partial-wave radial functions, is
2 [eon)
TEWEBA —ﬁT‘[; Fr(0,kR) U(R) Fr(0,kR) dR. (3.3.49)
a

Substinting again these T-matrlx elements Into BEq. (3.1.43), or by a special case
of Bq. (3.3.20), the three-dimensional form for the PWBA scattering amplitnde is

FPBAG) = —;ﬁz de e~ R (R, (3.3.50)
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Fig 3.5 Ilustrating the Born series (3.3 48) for the wave function y, az 2 sum of a ho-
mogensous term with single, doubls, and higher-order rezcattering contributions: to the
outgoing wawe .

where the momentum transfer g = k — k;, so ¢ = Bksind /2 The PWBA am-
plitude iz thus simply propertional to the Fourler transform of the potential. The
PWEA Iz expected to be more accurate at very high energies when potentials are
waialk, such as In electron-miclens scattering.

Two-potential scattering

From Eq. (3.3.35), the two-potential forrmla, the exact T-matrin expression is
again
2
T4z gl _ ﬁT’Z{X{_”UE I (3.3.51)
where, from Bq. (3.3.39), the exact wave function iz the solution of the implicit
equation 4 = x + &G04, We may again by Iteration, therefore, form a Born
saries

TE =70 _ 2 (O + (O abd + ] 3352

We might expect this series to comverge If U7 Is weak In 3 mitable sense. We do
#et here require that U7 Iz wealk

Post and prioy F-matvix ntegrals

The exact expression (33.51) Is often called the peost Frmatrix integral because
the solution ¥ for the first potential T4 is in the pest or final channel A mirrer
prior Fmatrix mtegral can also be derived where the 3 1s In the prior or entrance
channel.
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We may rewrite Bq. (3.3.52) as

T+ _ T _ M [{x': Nt (xOTely + . ]U2|X}, (3.3.5%)

and define the expression in the square brackets as {4 I:_:'| where
1}5.':—:' — X':—:' + é;Uz*X(_:I +...
= 3\ + Gyt (3.3.54)
The Green's function @1_ is the complex comjugate of @i" and thus describes in-
coming boundary conditions like Bq. (3.3.38). The wave function =) iz thus a

full solution satistying [£ — T — T — D]’ ) = 0 but with incoming boundary
conditions. This wave function appears now In the prioy F-matrix ltegral

T+ — T _ ;_“k{w(—ﬂgz M%E {3.3.55)

The wave functions on the kets of Eqs. (3.3.51) and (3.3.55) are often written with
a(+) as a reminder that they are calculated with normal cutgeing boundary con-
ditions:

TO) = T 2 (O ) = TO - 2 (5O ). (3,556

H now in multi-channe] theory we label the wave functions by the channels In
which there iz a boundary condition with a plane wave, the post and prior T-matrix
integrals for the reaction from entrance channel o to exit channel o are

iy
TEHD =T ﬁf;c S DSy [post], (3.3.572)
Uiy _
=T& - ﬁf;c W T2 xS Tpror). (3.3.57b)

Remermber hare that the Xi are the wave functions with &7y only, and that the
'g{.'i are the full coupled wave functions with V7' = I + T, so the potential in
the matrix element iz ¥, = ¥ — U7, The superscript (+) refers to the norroal
boundary conditions with cutgeing waves except In the elastic channel, while the
minug {—) superscript refers to the unusual [#eoming boundary condition in all
waves (in addition to the plane-wave component in the elastic channel).

H the second terms of Bq. (3.3.57) are inserted In Bq. (3.3.44) and summed over
all partial waves, there are analogous three-dimensional integrals for the vector-
form T matrices T o g, (K k) from Bg. (3.342). If X is the system scattering
function for potential T7(R) and P with V{ f), then the scattering from ¥ that iz In
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First order Second order All orders

Fig 3.6. First, second and all-ordercouplings withina set of 0F, 2% and 4% nuclear Levels,
starting from the ground state.

addition to the &7 scattering has vector-form T-mnatrix expressions in two versions:

(1% post -
T et (K e} = (X(R )| VU [T (Rik)) [post],  (33.58a)
2(1%:pri - .

TR (k) = (R (RIK) | VU [Xppes (R, b)) [prior]  (3.3.58D)
that should be equal. Both of these give scattering amplitudes f = — 5T ac-
cording to Bq. (3.3.31), and then cross sections o = |f|* as a function of angle.
Strictly speaking, the P and X both carry m-state quantum mimbers: these carry
over together to the I as in Bq. (3.3.42), and hence to the scattering amplitndes f
and cross sections o.

Distorted-wave Born approximation (DWEA)
If the series (3.3.52) istruncated after the first term, linear in /5, then

2
TOWBA _ T(1) _ ﬁTJ[;{X':_”UﬂX:‘ (3.3.59)

is called the distorted-wave Bork approximation (DWBA), bacause it iz a matrix
elemnent using wave functions x( ) which include ©7; as a distorting potential. It
iz a first-onder DWBA because T7; appears only linearly. It is particularly useful
for exit channels where T might be, say, a central optical potential that cannet
by itself cause the transition. In this case T = 0, and we have the convenient
DWEBA expression for the T matrix from incoming channel o to exit channel o

e
IWBA -
Tm.z- = _ﬁz.i:; ':I.ch :I|U2 ¢ eee ) (3.3.00)

There iz similarly a second-order DWEA expression

2t _ — 2
Tam-DWBA — e [ O ray) + (10263 U )] - 3361
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Figure 3. fllustrates first- and second-erder couplings, in contrast to Inclnding all
couplings in a full coupled-channels selution.

First-ovder DWEA for transfer veactions
H we write the DWBA T-matrix element of Bq. (3.3.60) using the formalism for
cmltiple mass partitions developed In subsection 322, then we have a DWEA

expression that can be used for simple transfer reactions that couple one mass par-
tition to another. In that formalism, we have

2t - -
o - Bt S

where the inner matrix element (o — £|o;) Integrates over the Internal nuclear
coordinates £, and vields a non-local function of K, and R, that iz then integrated
in a matrix element with th_:'(ij and ¥, (Fz ). As discussed in subsection 3.2.2,
the inner Hamiltonlan A may be wiitten in elther prior or post forms. If we take
the prior form of BEq. (3.2.46), and keep a diagonal optical potential &7, with each
kinetic energy term, we have now

Xei) (3362

w7 - pricr gju'a — - P
Tgﬂém = - Rk, <X5t ) |Nm-¢' [Tﬂéfré‘l'Uﬂé_Eﬂémié] + Vaz&,- |Xa¢'>
2 . -
= - ﬁ;[::"f [{Xg:—:llvjr;g |XG-¢::' + ':ng_:llei ”Tm.iﬂ.i +Ua.,-_Ez.,-p.it.,-]Xa.,-:'i|
2 .
= — R OV, e (3.3.63)

since the one-channel functions ., are found by [T, 1,4+ T — Eripets [ X = 0 A
simnilar calenlation of the peost DWEA matrix element yields

. 2 _ - .
Tt = = 2 ) | Bt U Bl + V| X
2pin 4.
= Rtk ':th }li’fae |as) (3.3.04)

We therefore see that in these first-order DWBA expressions for transfer reactions,
the non-orthogonality terms P:Fmé disappear. Moreover, if both Eqs. (3.3.63) and
(3.3.64) are derived consistently from Bq. (3.3.62), then the above derivations show
that they must vield the same T-matrix element 2. Neither of these conclusions are
true for sacond- and higher-order TWEBA calculations with transfer reactions.

Approximate coupled-channels solytions

As discussed on page 89, the result of these Integral expressions may be equally
gbtained by sclving inhomogeneous differential equations. This means that the

X Thiz necessary peet-prior sgreement of first-order T- (or 5-) matrix clemen in all partial waves yieldk a good
check on the acoracy of calculabons.
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dbove PWEBA and DWEBA approximations may be also reached by medifications
to the coupled channels aquations. In particular, the first-order DWEBA result may
be identically cbtained by removing all couplings except for keeping the diagonal
potentials in the elastic (o) and final (&) channel (T7;), and keeping the couplings
fram the elastic channel to the final channal (T/3).

Allowing for a distinet potential T7; in the entrance channel, thiz medified coupled-
channels set iz

[Ta; + Ui — B ey = 0
[To+ 01— Bl + Upthsy =0 (3.3.65)

These equations may be equivalantly solved in three ways:

(1) By solving the differential equations according to the exact methods of subzection
632,

(i) By solvingthe mhomogeneousdifferential aquation (3.3 65 ) by the iterative method
of subzection §.3.3. The elaztic channel wave function will be just the uncoupled
solution s, = Xe,,and the final channel will be populated after the first iteration.

(iii) By evaluatingthe T matrix for the final channel by the DWBA integral of Eq. (3.3.60).

For the restricted set of equations (3.3.65), which do not have the back couplings
from the second to the first channel, thesa three methods will give identical remlts.

3.4 Identical particles

The spin-statistics theovem Iz a fundamental result in quantum field theory. This
states that spin-half objects obey Fermi-Dirac statistics and have antisymmetric
wave functions, whereas integer-spin cbjects obey Bose-Einsteln statistics and
have symometric wave functions.  An (anti)symroetry of the collective wave fune-
tions means that, on interchanging the coordinates of any two particles, the wave
function changes sign (antisyometric for fermions), or remmaings the same (symmet-
e, for bosons).

Up to now we have not taken into account the Pauli principle for identical
fermions, such as for protons and for neutrons. This principle Is most universally
followed if the wave function for a set of 1dentical particles iz awntisymmetric under
the interchange of the coordinates of any pair of these particles.

We first note that if two groups of nucleons are sufficlently far apart that their
wave functions do not overlap, then the exchange of one or several nucleons be-
twean the groups cannet affect any observable. This means that antisymmetrization
between the projectile and target tends to be less significant in scattering theory
than in nuclear stucture theory, because during scattering the phase spaces occcu-
pied by the projectile and by the target micleons are more likely to be apart both
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in distance and in energy. The Pauli principle can thus be treated most often as a
perturbative correction.

The only exception about antisyrometrization is exchange of @il nucleons for
1dentical nuclel, where there are now both direct and exchange amplitndes that add
coherantly, so such cases will be considerad below, In subsection 34.2. We will
dizcnss the structire izsues again in subsection 5.3.2. First, however, we sez how
to treat protons and neutrons as almest identical particles.

3.4.1 rospin

The proton and neutron are almost the same in mass (Am/m = 1.4 x 1077),
and thelr different electric potentials and magnetic moments make only a small
difference compared with the strong nuclear forces. This suggests treating them
ag identical in some sense, and including the electromagnetic effects (etc.) by
perturbation theory.

The only sense that the neutron and proton need to be distinguished, then, Is
for the Pauli principle: to make antisyometric wave functions. For this purpose
{alone) we have the option of following the standard derivation of two ‘states” for
a pucleon, to be regarded as in one of two states depending on an isobaric wariahle
7,. This distingnishes a neutron (v, = 1) from a proton (7, = —1).% Thus a full
speciication of a nucleon depends on peosition r, spin z-component o, ad now
dlzo izospin z-component 75 as ¥k, 7a, 72).

H we define the neutron state vector as |n) = (é) and [p) = (S) then the 7,

a .
1) haz as eigenstates the above vectors:

1
t
operator ( 0

falz) = +1 ) and fefp) = —1 [p). (34.1)

The +; may be supplemented by 75 and 7, which follow the familiar algebra for
compenents of a spin-1/2 particle, namely

. {01y (0
T’*“(l D)' T“’_(i D) G342

satisfying the commutators [rg, ;] = 27 for (pgr) cyclic permutations of (zyz),
by analogy with the Paull spin operators. This justifies the name of sospin. In

! This assigmment iz 2 matber of comventional choice.
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terms of the original |72) and |p) states, the izospin operators may be written

Tz = [p)in| + [ (p]
y = 1lp} (=] - =) pl]
Ta = |}z |p)ip| (34.3)
From the F; matrix operators, we obtaln the isetepic spin cperators
- 1. 1
t=oF = 5o %), (34.4)

Since ¥ = 3/4, the nucleon has total isospin ¢ = 1/2, and z-components m, =
t: = +1/2 for the neutron and —1/2 for the proton. The operators £} = &5 4 ity
and t_ = &, — ity are the raising and lowering operators respectively, as from Eq.
(3.4.3) we see that £, = Z|u)(p| and _ = 2|p}{n|.

Composite systems

For gystemns of two or more nucleons (& = 1,2, ...), the Izospins may be couplad
to a total isospin

T=3"1i, (34.5)

L
with z-component 7, = (N — Z) for N neutrons and Z protons. For even
mimobers of nucleons, T = 0,1,..., and for odd numbers T° = %, %, .. Two

neutrons have 7, =1 and two protons have T, = —1, and this is only possible if
T'= 1. Aneutron and a proton together, by comparizon, have ¥, = 0, and hence
either 7' = Dor 1.

Antisymmetrization can be applied to neutrons and te protons separately, but we
can make for nucleons what Bohr and Mottelson [12] call a gerenalized antisvim-
metrization principle, that the wave function for a set of fermions Is antisymmetric
with respect to the interchange of all coordinates (space, spin, aad Izospin) of any
pair of nucleons.

Consider the case of two nucleons with coordinates (ry, des, T2e). € = 1, 2. Anti-
symmetry requires T(1,2) = —T(2,1). Let the spins 51,35 be coupled to 5, the
Isospins £,z to T, the relative angular momentumn be L, and L + 8 = J the total
spin. Then

Ts(1,2) = [FL(R) ® [51 ® s2]s]s [f2 ® t2]r, (34.6)
which ghves, on interchanging the particles 1 and 2,
Ts(2,1) = [Yo(-R) ® 5z ® 51]s]s [fz ® ta]r
= (1) (—1)B e (—) (L, 2)
= (-~ 0,0, 2) (34.7)
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Fig 3.7. EZpectra for A = 12 izobars: the dashed lines indicate zome of the izobaric ana-
logue states in the A = 12 nuclear multiplet, from the compilation [13]. Each state is
labeled by J7, T fortotal izospin T, where these are known. Reprinted from F. Ajzenberg-
Selove, Mucl Phys A S06 (1990) 1. Copyright (1990), with permizzion from Elsevier

asall 5; = & = 1/2. The factors like (—1)5-°17%2 come from the symmetry
properties of the Clebsch-Gorden coefficients:

(s1p01, 52z |Tp) = (—1)5 777" (5200, 5300|Si). (3.4.8)

Antisymretrization for two nucleons as fermions then requires that they be in a
state where L+ 5 4+ ¥ is odd

For more complex nuclel compeosed of antisymmetric pairs of nucleons, T 1s still
1 good quantum number even though there are greater effects of Coulomb forces,
which depend on the projections £, We find that Iscbaric sets of nuclel (those with
constant A) have many sets of energy levels that are similar In absolute energy
when 1" > 01s a constant, and varying slightly only because of the additional
Coulemb repulsion when a neutron iz replaced by a proton. These sets of levals,
llustrated for T = 0, 1 and 2 in Fig. 3.7, are called (sobaric analogue states,
and have very similar internal nuclear stmieture. There is little mixing between T
values, only slight energy shifts that hardly change the structure.
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3.4.2 Direct and exchange amplitudes in elaséic seattering

The scattering analysis so far has dealt with reactions of the form p+¢ — p'+¢" for
projactile p, target ¢, ajectile p’ and residue ¢ that are considered distingnishable
muclel. In the light of the previous section, however, we have to consider the cases

of

(a) Zcattering of identical fermions: p = # of odd baryon number;
[b) Zcattering of identical bozons: p = ¥ of even baryon number; and
() Exchange scattering: p' = ¢ and ' = p, and pis distingnizhable from ¥,

where p and £ may be clusters, not just individual micleons. This Iz a way of taking
into account one impeortant overall property of clusters without considering their
internal structure in detail. If the nuclal wers distinguishable, the wave function
@i{,ﬂ(&m £, &) for their combination in a system would simply be the product
of their separate states ¢y, and ¢, with angular momenturn and orbital factors as
In subsection 3.2.1. MNow, however, we canneot always use such a product wave
function if we are to satisfy the Paull principle.

Let us define an ‘exchange index’ ¢ = 41 for boson-boson and € = —1 for
fermion-fermion cellisions, so the (a) and (b) cases may be considered with one
forrnalism Dhefine the operator Is‘pt which exchanges projectile and target coordi-
natez in the wave function of the combined system. The spin-statistics theorem
implies that £ = (—1)%%, where I, is the overall spin of the projectile. A complete
wave fiunction U, should therefore satisfy B (R) = eT.(—R), or

B (R, &5, &) =000 (—Ray 6, 85). (34.9)

e oI

Hewmtical spinless scattering

Consider first the simple case of spinless scattering,®* but keep explicit reference
to £. The asymptotic form for non-1dentical scattering on spherical potentials is

given by Bq. (2.4.12), namely
_ ik E
gy = A [ 10,

g0 a suitable wave function for identical particles 1s
VE(R) = () + € V0 (—R). (3:4.10)

We now caleulate the initial flux 7; and final angnlar flux 5 #.1n order to calculate
the cross section o = 3 #/7:- The Incident wave is

TR = A[e'*® + £ e71%%] (3.4.11)

22 This section is this smictly applicable only to boeon scattering, but the exercise is neeful.
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Fig 3.8, Direct (a) and exchange (b) paths which interfera with ach other, in the scattering
of identical particles from c.m. momenta £k to +k' or Fk', after scattering by angles ¢ or
T — &

and the scattered outgeing radial wave is
ei'!':R ei'!':R
VRHR) = A[F(0) + ef(r— 8] = ARGV . (41
The total flux in TR is numerically zero. Goldberger and Watson give more
detailed analysis using wave packets [14, §4.3]. which shows that the incident flux
iz a combination of a projectile flix %MF in the +z direction, and an (identical)
target flux in the —z direction. The projectile flux in the beam iz therefore j; =
% |A|?. The scattered flx is 7; = %‘h | 4|2 F<(#1|%, 5o the needed cross section for
1dentical particle scattering is

a(8) = |f(8)* = [F(6) +f (m — 8)[* (3.4.13)
= [F(OF + |[flr— ) + 26 Re f(8)*F(m—6). (3414

Figure 3.8 shows two kinds of semiclassical paths that could interfere in this wav,
corresponding to scattering angles & and m — #.

Since Pr(cos(m — 8)) = (—1)¥FPr{cos§), the new amplitude has the partial-
wave expansion

[xa]
Fo(8) = % > (2L+1)Prcos6) To[l +e(—1)7], (3.4.15)
L=0
where Tz Is the scattering T matrix that would be cbtained i the particles were
distingnishable. This implies for the scattering of identical bosons, where e = 1,
that odd partial waves should be remowved, and that the amplitude for the remaining
even partial waves should be doubled.

Idewmtical pavticles with spin

The above analysiz for I; = L = 01s necessarily restricted to £ = 1 for identical
bosons. For identical fermions it is essential to include spin. This iz easiest in the
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Fg 3.9 Femmion zinglst (a) and triplet (b) nucleon-nucleon scattering cross sections, az-
suming pure Coulomb scattering with 9 = 5. Case (a) alzo applies for bozon scattering
The cross section is in units of 2 /4E2,

8 (channel-spin) partial-wave basis, where the effect of the Iz‘pt exchange opsrator
iz

P L{ Ipy L) S ot = (=) E (=15 TR |L(E, [V S Asz)  (34.16)

with the radial wave function itself, 4, (R.,), not being affected. The (—1)% factor
comes from reversing the direction of the radins vector in the spherical harmonie,
and (—1)%~%~% comes from reordering the coupling of particle spins to make
the channel spin. The expression like Eq. (3.4.15) for the scattering amplimde is
therefore different for different channel-spin values 5t

fa(8) = % i(QL-I—leL(ccs 81 TL[L +E(_1)L+S—I?_rf]
L=0

[een)
= % > (2L+1) Prlcos 6) T [l + (—1)F+5] (3.4.17)

L=0
since I, = Iy and £ = (—1)%» for two identical particles. (This formula holds
for bosons If we set & = 0 In that case) The partial waves that give non-zero
scattering are those with L + & even. We say that the partial waves with I 4 &
odd are hlocked by the Pauli principle. Mucleon-mucleon scattering, for example,
is thus different in singlet (5 = 0) and triplet (5 = 1) states, and gives rise to the
characteristic Interference patterns shown in Fig. 3.9 The singlet scattering on the

laft is the same as would be obtained for the scattering of two bosons.

We can repeat the above analysiz using a tetal izospin T for the combined pro-
jectile and targst system, and we will find that the allowed partial waves are those
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with I + 5 4+ 7" odd. Two colliding neutrons or protons require ¥ = 1, so this is
the same conclusion as above.

H there are spin-dependent forces (much as the spin-orbit or tensor forces to be
defined in the next chapter) then full multi-channel scattering theory must be used,
net the simplified theory above where the T matrix only depends on L.

3.4.3 Integrated cross sections

The definition of angle-integrated cross sections has to be specified carefully for
identical particles, since for every nucleus removed from the beam, the elastic scat-
tering produces twe identical nuclei to be detected. The differential cross section
a(8) = |fa(#)|® measures the outgoing probability of detecting a specified product
no matter how it was produced, but now the angular integral of thiz can be more
than the flux leaving the initial beam! By convention, we resolve this discrepancy
by defining the elastic o as the cross section for removal from the beam. Then,
using Eq. (3.4.17) in a derivation like that for Bq. (3.1.50),

1 o a
Oa = —f dqi:f dfsin 6 o(8) (3.4.18)
2 u} u}
2
=2 > (2L - St (3.4.19)

L+ 5 even

The reaction cross section Iz given by a similar expression

T
o =2 > R+ - S (3.4.20)
L4+ 5 ewen

The same definition iz used for the non-elastic products from the reaction of two
identical miclei. The cross sections oo 5p, from incoming channel o;p2; to exit
channel zp¢ are defined as the flux from the beam of projectiies that goes to the
axit channel If the projectile and target are 1dentical, then, in crder that Individual
cross sections add up to this above total, the relation between the transition ¥ matrix
elements and the angle-independant cross sections must be

T 1+ me

R
Y Dot +1) |80 2. (3421
RE (2L, +1)(20,+1) Z (2ot +1) ]S, |*0 ( )

Job oot

Ummtmipyty

The generalized extra factor 1 4 dy,,, doubles the cross section when the projectile
and the target are identical axd in the same excited state. This equation assumes
that 5-matrix elements have been set to zero for those partial waves blocked by the
Pauli principle in either the entrance channel o or the exit channel o (or, sultable
linear combinations set to zero, depending on the cholce of partial-wave basis).
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We still have the detailed balance |8, |F = |S4,o|%, so the reverse cross saction
should now be related net by BEq. (3.2.01) but by

EE(1 4 6m) (20 +1)(20,41)

et = 3.4.22
e R N I I NG T AN 10T AR i 3.4.22)

to the forward cross section Gppppe,- The new factors will appear again in Chap-
ter 12 whean we use the cross sections to find reaction rates in gases.

3.4.4 Exchange éransfer

This occurs in transfer reactions such as "He + *He — *He + "He, wheare the
transfer process adds coherently tothe elastic scattering arnplitmde, but with revised
telative coordinate. In general, consider p+ £ — & 4 ¢ reactions where the primes
indicate the transfar channals. W construet a total wave function

Do = W + £ Bprgetfiyepe (3.423)

wharee = 1farp £ tande = (—1)”? for p = ¢, and where again ﬁ'prtr iz the
operator which exchanges the p* and ¢ nuclear coordinates. In the 3 basis, we saw
that Py, generates a diagonal factor (—1)%+5 %% In the Tbasis, it generates
i linear combination of |o) basls states. The effect of elastic transfer Iz generally
to give a backsward-angle peak in the elastic scattering distribution.

35 FElectromagnetic channels
3.5.1 Maxwell equations and photen channels

The Maxwell equations for the magnetic H and electric E field vectors are, In
(Faussian units,

dar 14dE
VxexH = —]j S—
r:']q o di
1dH
Vel =-2—"1"
o di
V-H =10
V B = dmg,, {3.3.1)

where the soures terms j, and oy are the charge current and charge density, respec-
tivaly. Thess describe the classical electrommagnetic field surrounding a nucleus.
At low velocities, this is predominantly the electrostatic field arising from g, the
charge density of the protons in the micleus.

In addition to this electrostatic field, there can be radiative photons of higher
energies produced by capture reactions, and similar photons that may lead to the
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breakup of nuclel To a first approximation, these need only be considered one at
a time, since (unlike a coherant laser fiald), radiative photons will genarally react
Individually. In thiz section, therefore, we consider the coupling of ene ndiative
photenr with the charges In a nuclens that may lead to its excitation, and also the
reverse: the production of a photon by a decaving nuclear state. The higher energy
states in a miclens may be In the contimium, in which case these reactions are
photo-disintagration and phete-production reactions, respectively. The photon by
itself will have a specific energy £ = Fw and mementum py, = Ak, = £ /e

Vector potential

We define, in the standard manner, the vector potenticl Alt) and scalar potenticl
@(t) such that

H =% x Aff), (3.52a)
1dA
Substitnting these into the Maxwell equations (3.5.1) we find

1d%A 4 1_dgp

i el in B L . o S
VAL 4+ o di - Ja + ViV - A+ C\_-*' 3 (353

14

Viplt) = —dmpg(t) — ~ (V- Alt)), (35.4)

where we have used the ldentity ¥V » (V x A) = V(V A) — VEA
The potentials A(f) and @) are not fixed, but may be changed according to
some arbitrary spatial gawge function x(t) by

A(t) = AlE) + Vx(t) (3.5.5)
E) = @(t) + Ix(z)/ ot (3.5.6)

This means that we are free to choose the gauge x(t), for example so that
v A(L) =0, (35.7)

which iz called the Coulomb or transverse gauge. In this gauge, the scalar potential
satisfles Poisson’s equation

VE(t) = —dmp,(z) (35.8)
and the vector potential satizfies an inhomogensous wave equation
1d%A 4 1_dg
z .
A+ ——— = —— -V—. 3509
v I:)-I_rzz d? c']q-l_r:vdt (329

We now make our physical exe-phetor approximation, separating the electro-
static field caused by the charges o, from the radiative photon that couples to the
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currant jo. In this case, ¢ bacomes time-indapendent like o, and the electromag-
netic wave equation for a radiative single photon becormes

1 d%a dar
VAL +——— = -, 3.5.10
(@) et dil e ( )
For a fixed monechromatic photon energy £y = Fuw, we can write the time-

dependent vector potential A(%) in terms of a time-Independent A and current |
as

Alt) = Ae™™t L Arglot (3.5.11)
Jalt) = je7™ 4 j e, (3.5.12)
The wave equation for the stationary-state A-vector potential is thus

v2ﬂ+k§ﬂ=—4—:j. (3.5.13)

3.5.2 Caupling phatons and particles

This classical description of the electromagnetic field will now be connected to a
quanturn description of the particle dynamics, by using for the source flux j the
quanturn mechanical matrix element, at each spatial peosition v, of the elactric form
of the general current operator of Eq. (3.1.101)

J(e) = (@]je(r) [T), (3.5.14)

whereboth $(r;) and T(r;) are wave functions depending on vector positions such
as r; for each charged particle £, and the bra-ket implies integration over all the r;.
Both r and all the r; are actnal positions in the center-of-mmass frame, not relative
coordinates. The bra and ket wave functions are allowed to be differant, giving off-
diagonal matrix elements whereby electromagnetic effects of particle pramsitions
may be described.

In the free-fizld case this matrix element is that of j?ree’

. i
(0] jfea|T) = m—i [@* (VD) — (V)" D], (3.5.15)

Capture [photo-production)

Photo-miclear couplings may work in two directions. A current of charged particles
may produce photons, for example in the pheoto-production or copture reaction
"Be(p,7)"B, important for solar neutrino production. At other times, the photons
may cause the movement of charged particles and the brealmp of bound states as
in SB(fjr,pjl?Be: thiz is called photo-disimtegration and described in the following
subsection.
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The coupling from particle current to photon production, for particle initial scat-
tering state T and final bound state T, 1s therefore described by

VA EEA = — —(Dpjiree|T). (3.5.16)

dir
€
It is convenient to multiply this equation by —fic/ky, so that the coefficient of A
becomes Refky x ki = Reky = £, and has the same units of energy as in a

Schrédinger equation:

Re 4k -
[—k—v?‘ - ET] A(r) = = (D [frea(r) | T). (35.17)
; b

This equation has the form of a particle-to-photon coupled equation, linking the
initial particle state I to an outgeing photon field A with an ‘interaction Hamilte-

nian’ operator H,, = d—'gi (Dp[igree-

Photo-disintegration
The standard minimal gaxge coupling describing the influence of an electromag-

netic field on particle metion is found by transforming the Schrédinger equation
[B* /2m + V' — E]T = 0by the ‘minimal’ replacement

p—p— LA, (3.5.18)
|

where A Iz the vector potential for the electromagnetic field. Bxpanding the square
we have

1 .z 9 . N qz z _
[2# (p —C{ﬂ-p+p-ﬂ}+c2|ﬂ| +¥V - KT =0 (3519

Naglecting the |A|® term according to owr one-photon approximation, and, using
p = f/1 v, this particle equation becormes

AT A LT Wy ST
2l

= LT T A
2l

= %fdrﬂ[rj Lo (3.5.20)

where in the second step we use integration by parts, assuming that in any matrix
elernent the product of both the Initial and final wave functions goes to zero asymp-
totically, which iz te for transitions to or from bound states. In the final step we
used the electric current operator j:?ree(rj defined in Bg. (3.1.99), with a charge ¢
factor.
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Hthe potential ¥ in the Schrodinger equation iz non-lecal, then it will be mementim-
dependent, and strictly we should perform the minimal replacement of Eq. (3.5.18)
in these operators as well Without knowing the details of the non-locality we
cannot give a general derivation, so for now we will assume that the effect of thase
non-lecalities is to supplement the free current operator in Bq. (3.5.20) by the ‘two-
body current’ terms j:z dizcusszed In subsaction 3.1.4. This gives the more ganeral
photo-disintegration result of

[T+ V- E]D - %fdrﬂ(r) jle) B =0, (3.5.21)

For a photo-disintegration reaction with particle initial state $p and final scatter-
ing state ¥, the main contributor to the second term will be the wave function of
the bound state:

[ +vV - B0 — %fdr A(r) - j(r) Do =10, (3.5.22)

where we have an effective ‘interaction Hamiltonian® Mgy = — %.ﬂ. -jthat couples
betwaen two particle states.
Equally,  Eq. (3.520) can be written as

[ +vV - B0 — %fdr (j(r)Ds) - Alr) =0, (3.5.23)

for fixed initial particle state Ty, then this again appears as an equation coupling
the incoming photen field A to the particle state T in the continuum The coupling
operator is Hy, = —1 [ dr j(r) @, .

3.5.3 Photon cross sections
When the photon outgoing wave is A in direction k, so A(r) = ae®" the cross
section depends on the sumber flux of photons. In order to determine this from the
magnitnde of A, we calculate the Poynting vector, which s the energy flux, and
then divide by the energy of each photon.
Given A, the physical vector potential of BEq. (3.5.11) 1s
A(t) = DRe(Ae ™)
= JRe(agl el
= 2acos(k  r—wi). (3.5.24)
The electric and magnetic fields are therefore

E(t) = 2k,asin(k £ — wi) (3.5.25)
and Ht) = 2(kx a)sm(k ¢ — wi). (3.5.20)
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The Poynting vector for the energy flux iz constructed as
Sp=—FxH. (3.5.27)
dar

Far from the source, where the radiative field has B and H mutnally perpendicular,
the magnitndes [H| and |E| become equal, so

[ [
S| = o |BI* = —[H[*, (3.5.28)

As {|=infz)|*) =1/2, the time-averaged {|E(z)|*) = 1|2k,a|* = 2#:,23,|a|2, and the
time-averaged energy flux is

z

Sp(A))) = 202 3.5.20
(Ise() = 2= lal’. (3.5.29)
Dividing by the photon energy £, = Rk, e, we find the outgeing photon number
Tl
- s NPT
=——la|". 3.5.30

Because this flux formmla has factors additional to the expression of BEq. (2.4.1)
in quantum mechanics, it is now convenlent to define a vector photon wave function

Fy
Qe

Z(r) = A(r) (3.5.31)

so that photon number density iz simply |Z(e)|?, and the photon number flux now
appears as should be expected:

gy = €|Z(r) ", (3.5.32)

By EBq. (2.4.1) thiz 1s appropriate for a quantim mechanical object moving at the
spead of light c.

In terms of this new photon wave function, the photo-production ‘coupled equa-
tion’ (3.53.17) bacormes

[_:_:v?- - E,,,] Z(r) = ;’;C%{@aﬁ(ril‘l’}

2R

= 2/ ¢ (@)

= 2/ Bjw(Ds () [T, (3.5.3%)
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and the phote-disintegration equation (3.5 .23) becomes

[ +V - BT = ,!Z”Fﬁclfdrj(r)@b .z
By €
= hjw fdrj(r)ﬂlﬁ&-z (3.5.34)

These two equations (3.5.33, 3.5.34) have almost the same kind of coupling
Interaction, namely the operators

Vs = /R @eli(r), (3:5.350)

Voy = Vhjw fdri(r)%- (3.5.35b)

respectively, using the bound particle state ©g In each case. The factor of 2 differ-
ance in magnitnde of these two couplings arizes from the relativistic kinematics for
photons, as explained in the Appendix on pags 122

The electromagnetic coupling operators of Bq. (3.5.35) are written in thelr cur
rext form, as they use the derivative current operator of Eq. (3.1.99). This iz com-
monly judged as too complicated for everyday use, so in Section 4.7 an approx-
imate form for the couplings will be derived. That form will be valid for long
photon wavelengths (low-enargy photons).

3.5.4 Partial waves and vectar spherical harmonics

The photon vector potential A(r) and its normalized form Z(r) are described by a
three-dimensional vector at every spatial position r. Thess three coordinates may
be equivalently mapped onto the three fm-state amplitndes @ = —1,0, +1 for the
photon as a spin-1 object.®* Let £ ;. De three (complex) unit vectors in 3D space,
such that the complex ceefficients Z, in Z = 37 Z,£,, in this basis transform as
the compenents of a spin-1 vector. Cne chelce for the £, is

=% and £, =FREF)/V2 (3.5.36)

The vector field Z(r) can therefore be expanded as the coupling of a spatial
angular momentumn A with photon spin 1 to form a tetal spin Jy. In a caphure or
disintegration reaction, this iz coupled with the spin Jp of the bound state to give
Jiot, the total angular momentumn which st equal that from the particle scattering
channel, |} = |(LI;)J5, 1y Jio,- In the normal manner of subsection 321 we

2% The requirament of gauge imarsnce and the mducton to bao components will be preented in zubeecticn
333
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use partial-wave expansions to write the total wave function as a sum of photen ()
and particle (p) channels as

M M M
Vi = Todan U5,
= > ALy Toi oot )y (r)f7 + 3 N LEp) gy i Fucn)tfal B) /R
AJb Ll

> e + > el R)/ R, (3.5.37)

whare |7) = {(Al)Jy, Jp } refers to the set of photon partial waves, as well as the
coupling of the spin Jp of the bound state Tp(R). Both the |y) and |o) contain
just the amgular part of the basis states, with {4(r) and 4. ) being the respective
radial parts, and depend on Jyp implicitly. As usual, the particle channels are
written using the relative separation R instead of the distance r from the center-of-
rmass, but these are linearly proportional.

The coupled state [(Al)J,) In Bq. (3.5.37) Is often called a vector sphevical
Rermenic, explicitly the basis component

YI5(8) = |[(AL)T) = > {Am, 1u| M) £, YI7(E) (3.5.38)

T

that includes the photon vector states £,. It is defined for each A = Jy—1, J,,
J,+1, and has spatial parity (—1)*. The vector spherical harmonics transform
under cocrdinate rotations by the normal rotation moatrices Dﬁ (7} for a spin-
4, objact.

The electromagnetic field Z{r) can therefore be expanded in vector spherical
harmonics, with a sum over a range of A and J, values. The J, value gives the total
spin or multipole of the photon, and the spatial form of that multipels is determined
by the A value in the range |Jy—1| < A = J,4+1.

Using Bq. (3.5.37), the coupled equations of Eqs. (3.5.33) and (3.5.34) mmavy be
rewritten in terms of radial functions for each partial wave |y) and |e):

[Ta — E4] Gy(r) = Z{’T|VW|’1:‘ Wl )
[T+ Ve — B] 9a(B) = > {@|Viyly) G4lr), (3.5.39)

4

and solvad to get 5 {or T) matrices from which we have cross sections following
the pattern established for particle channels. When a photon T-matrix element is
defined as the asymptetic amplitnde T:jg;” of the cutgeing selution of Bq. (3.5.39)
for an incoming particle channel e; and for system parity -, the photo-production
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(capture) cross section

dar 1 c
Tonp = — — (27 +1) | T2 (3.5.40)
T RE (2L, )25 +1) v JZ

[F=] e g ]

since the cutgoing photon speed iz that of light, ¢
The T-matrix elements can also be found by the equivalent integral expression

T = ﬁCZ (0 Vgl bas (), (3541)

where the Inner matrix alement 1=z an angular integral and the outer one a radial one.
Since there iz no potential in the photon wave equation, the {_,'f'::,._:'(rj are simply the
free-fizld solutions, giving

T..th,m'

1
Y T g ':Fﬁ(':' kym )7 Vg | o) Yaaces (L)), (3.5.42)

1
- ‘EZ f 46— Fa(0,ky7) 8 Vip e (R, (3.543)

where the radial and angnlar integrals have been recombined into one intagral over
all space, and ¢, @, are the wave functions of the respective basis functions.

We can further calenlate the vector-dependent T-matrix amplimde Tk, k;)
from the T,“;'g:“ using Eq. (3.3.44). Since the photon wave functions In Bg. (3.5.42)
are components of plane waves, we have the Integral

T g P I:kq, kaajj I:(E#Ell-: P|Vw|‘1'm=pm (H k; :I::I (3.5.44)

over r, remembering that ¥, already contains an integral with respect to the par-
ticle positions ry, and contains the bound-state wave function 'Ii'fb_ The scattering
amplitnde in the photon exit channel is then

1
Fusisaggne, (Ky B} = — ;?CT““” Hptts ey, ), (3.5.45)

Following the usual pattern of Bg. (3.2.17), the 1m-states are summed over the exit
iy fip and averaged over the entrance pp, (4, to obtain the cross section for unpe-
larized beams.

A general photon field 1s therefore a linear combination of vector spherical har-
monics with mixed parities and multipoles. The parity of the field is (—1)#, and
thiz parity is used to distingnish electric from magnetic multipele compeonents of
the electromagnetic field. The electric part of a field A (or Z) iz defined as that
with parity (—1)71%+1, and the magnetic part as that with parity (—1)%. That is,
the electric part hus A = Jy £ 1, and the magnetic part has A = J,.  Both
compenents are inclnded on an equal footing in Eqs. (3.5.39) and (3.5.41), etc.
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¢ Muclear transitions, we will sse in general in Chapter 4, are clazsified az dipole,
guadrupols, atc.

¢ Electric and magnetic tranzitions are clazsified not according their spatial part A
but their multipolarity: the total angular mementum J, that iz transferred to or
from the nuclens by the photon. El and M1 phetons havwe J, = 1, whereas the E2
and M2 have J, = 2, 2fc.

& When the additional parity change fromthe curent operatoris taken into account,
electric transitions change nuclear parities according to (—1)7, and magnetic
transitions by (—1)%>~!. Parties are not changed by M1, EZ and M3 transitions,
for example, but are changed by E1, and M2 multipoles.

« W0 and EOQ transitions are not allowed by angular momentum selaction rules.

Eox 3.5: BElectromagnetic and miclear multipoles.

All the analysis of this subsection, however, has ignored the requirements of
gauge invariance. The above theory assumes three fm-states for the photon, g =
—1,0, 41, which iz incorrect. We next show, therefore, what must be done to
satisfy a specific Coulomb gauge condition. This procedure will remove some
components from the plane wave £,e" in Bq. (3.5.44).

3.5.5 Eleciric and magnetic parts in the Conlomb sange

H the coordinate system of Bq. (3.5.36) 1s not the laboratory system, but is speci-
ically chosen so that the z axiz coincides with k., the local direction of photon
propagation, the Coulomb gauge condition

vV A=V.Z=0 (3.5.46)

Is simply Ay = Zp = 0, as the polarization vectors £41 cover all the allowead
transverse directions. In order to satisfy this condition, we first constret a suitable
plane wave, and then rense this gangad plans wave In the T-matrix Integral (3.5.44)
for the general photon cross section.

Consider first a general plane-wave vector fleld travelling in the +Z direction,
A, = .Ep.,ei'hs_ The polarization states allowed by the Coulemb gaugs condition
(3.5.44) are u = %1, so we may set Ap = 0. Following the standard specification
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of Bq. (3.2.7) for coupling a spin-1 cbject to a plane wave in the direction of k,

£,857 = S V() £, (A, Ll TM) Fa(0,kr) fr
T A
dir .
X 3 YR (Aeme, Las T M) (3.5.47)
Ay

We now specialize to k in the +z direction so mm = 0, use the definition of the vector
spherical harmonics above, note that in this free-field case there iz no spin-flip so
L= i, and rename A; as A This gives

gﬁeiﬂcs _ \M—Wzm YR () A, Ll F) Fal(0, kr) /(kr). (3.5.48)
JA

Mow the electtie parts (those that have J = A+1) need to be grouped together. We
therefore reassemmble the above equation as

£,6%% = ar Y 2T+
J

4

A 2h4+1
?Yi,rtr) 7y o A0, T Fa(,ke) (k) | . (3.5:49)

Letus split the [. . ] into twoterms, and using the analytical forms of the (A0, 1u|Ju),
define the A = J magnetic part as

A (c; M) = (k)T (0, kr) YH5(E), (3.5.50)

and electric part as the sum ofthe A = J £ 1 terms

J+1 _ )
A &) = —2J+1(k1") YRy (0, k) Y S(E)
—J m~

—/ gy ) T a0 k) YH (). (355D

Finally, we multiply the electric part by u* soensure that it is zero when g = 0, and
combine the electric and magnetic parts to give the complete fizld £ p,fei'!“‘ satisfying
the gange condition:

Ay, = £, et = ,W%Z YOI V(A 2. (e M) + 1B g, (e €], (3.5.52)
J

Eoth these electric and magnetic basls compeonents are normalized like plane
waves,

fﬂ;M(r; E:J ' ﬂ_}erI:['; E‘rjj dr = E(k—.iﬂ'rjj EJJ'IEMM'IEEE"! (3553}
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where e, ¢ = A or €, and they are related by

1
A M) = wY X A (Ei€) (3.5.54)

1
Alr €] = wY X A s (£ M), (3.5.55)
so Vo Ang(rie) =0 fore=Aor € (3.5.56)

The Bq. (3.5.52) can be used directly for photon extrasce channels, since then
we do have a plane wave In the +# direction. For exit channels, however, we need
the expansion for a wave travelling in an arbitrary direction k. We cannot use
Eq. (3.5.47) directly, since the w; are components in the +# direction, not In the k
direction, and it iz the p = 0 compeonent [z the divection of travel that the gauge
condition requires to be zero. We therefore have to rotate BEq. (3.5.52) to obtain the
fi-projections in the k direction as

.E#Eik'r _ #@Zm iJ[ﬂJMI:['iMJ + i,[LﬂJM(riEJ]DJ{d’#(R"G):
JA
(3.5.57)

whare T, 1z the rotation taking the z-axis to the direction of k. Because the lab-
oratory z-axis Iz not now the direction of metion, all A values contribute to this
superposition, even in the Coulomb gauge.

These components can now be used to construct a scattering amplimde for pho-
tons in the Coulomb gauge if Bq. (3.5.57) is inserted into Bq. (3.5.44), vielding a
sum of magnetic and elactric parts

TH(ky, ki M) = uv2m > T D (R 1 (A g (0 M) Vi [R(R k)
M (3.5.58)
T#(ky, ke €] =~V 3~ T Dy (Rie, ) (Brae( €] [Vap [ B (R ki),
J M

(3.5.59)
suppressing the particle m-state labels and using J = /2741, The {...) matrix
elements appear In

Ty = (VAryaTHL Y Asne(ri () [Vip|B(Ri k), (35.60)

and so may be caleulated by normal integral or couplad-channels methods as shown
inthe next chapter, and the results rotated to obtain the g-projections for the photon
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in itz direction of travel as

T(ky, ke M) = ZD (R, 1 TS

Ty, ke €) = ZDM#(R.&—;M TS (3.5.50)

This method iz therefore equivalent to caleulating the pheoton amplindes T pr for
quanturn mimbers JAS from forward scattering (0°), and then rotating the ampli-
tudes to other angles according to the various JAS values.

Finally, we may define a lomgitudingl part of the field, another combination of
the A = J £ 1 terms, as

A sps(rilong) %? (k—ITFJ(U: Fﬂ’-’")YJM(ﬂ)

g
= mk Fra(0 ke YY) S(F)
J4+1 1
Q, &r)Y 3.5.62
EJ-I—IFc £ypa00, k) J+1J':r) i )

Though ¥V - Aj ag,(rilong) # 0, and hence does not satisfying the transverse
gauge condition, this lengitudinal componant will be useful later since it differs
from Bq. (3.5.51) only by the coefficients of its two terms. If the second terms
in both Eqs. (3.5.51) and (3.5.62) could be neglected in some circumstances, for
example when &r <& 1, then

A (e E) = QJ_I_I(FWJ YRy a0, k) Y S(E)

J'J-I—
QJ-I—II:F‘:T IF; 100, Fs:frj‘f; 1;([‘)
. 1,;“ ﬂm(r long). (3.5.63)

This approximation will be used in the next chapter to simplify Eq. (3.5.59).

Appendix
S-matriv symmetry with relativiséic kinematics

For low-energy miclear reactions, Mewtonian non-relativistic kinematics iz suffi-
clently accurate. Later we will discuss breakup reactions at Iintermediate energies,
but photons themselves, with Zero rest mass, are necessarily relativistic, so here we
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apply the relativistic kinematics of subsection 2.3.3 to reactions that couple photon
and particls channels.

In a coupled-channels scheme [T, — Eqlia + > g Vagllg = 0, the channel
kinetic energy is £y = By — By for total relativistic energy FE, = (Rke)® + £F
and rest energy £n = et .

The kinetic energy operator is in general T, = —#,V* with coefficient

ta = (Bier — B}k = Eu(y — 1)/ (3.5.64)

for k& = magyu/h with v = (1 — 4% /%)~ %% | In the non-relativistic limit, ¢, —
R O

The T-matrix integrals of Bq. (3.3.23) can be also written more generally, for
elastic channel oy, as

1 -
Taw = —— fFaZﬁquwﬁdR, (3.5.65)
L= 2ol ]
fromn which the symmetric 5-matrix form of Bq. (3.2.12) 1s
- . "."_,la
e, = Ay —= T, (3.5.66)
et
2 Fitln

= _mﬁ Fa? g Vagigd L. (3.5.67)
Non-relativistically, the quantity w, = fuv, k. = 2, the same for all channels.
The general relativistic expression, however, is w, = 14 (1 — 22/ r:zjlf ? namely
e, = 2 for v, & ¢, but we, = 1 for v, = ¢ with photons. For a symmetric 3
roatrix § we mmust have W, V.5 = wglVa,. This implies that the photon and particle
coupling interactions of Bq. (3.5.35) indeed satisty

Vip = 2 Vo (3.5.68)

Incontrasttonon-relativistic particle-particle couplings which moust all be symmet-
e

Exercises

31 Conzider that the neutron inferacting potential with a *He target can be approxi-
mated by a square well potential of depth —40 BeV and radivz 1.5 fm. Calculate
the scattering phaze shift for L = 0 and 1, for energies below 5 MeW Are there
ANy resonances?

32 The experiment of 0 on protons at 8 McVAu was performed to determine states
in the unbound system '®F Take a Woods-Saxon potential with parameters V. =
—489 MW, v e = 125 fmand e, = 0.75 fm and a zpin orbit force with V;, =
4.5 MeV, rp, = 1.25fm and ., = 0.75.

(a) Calculate the 3-matrix and the phase shifts for the 5, s and ds gp channels.



124

33

(1]

(2]
[3]
[4]
(5]
[a]

[7]
[8]
(9]

[10]
[11]
[12]
[13]

[14]
[15]

arattering theory

(b} Compare the walues for the energies and widths of the virtual state and
rezonance obtained through the poles of the 5 matrix with those obtained
through the derivative of the phase shifts.

ic) Compare your results with those extracted from the data [15].

Single nevtron transfer (d,p) reactions on * C have been measured many times.
There iz alzo a number of data for the imverse reaction (pd) on Y*C. Perdform a
data search and find two matching reactions for which you can check the validity
of detailed balance.
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4

Reaction mechanisms

An expert iz 2 man who haz made all the mistakes
which can be made in 8 very narmow field.

Miels Bohr

This chapter shows how the interactions in and between channels may be cal-
culated on the basis of some potential medel for a few Interacting bodies. That
iz, 2 Hamiltonian Iz defined whoss matrlx elements give rise to channel couplings,
also known as transition potentials. The parameters in this Hamiltonian may be
found either from stricture medels (Chapter 5), or from fitting data (Chapter 15).
It is also possible to directly fit to experiment the effects of these couplings on the
agymptotic amplitndes of the wave functions, and this is the basiz of the R-matrix
phencmeneology discussed in Chapter 10.

4.1 Optical potentials

Before we can discuss more detailed reaction mechanisms, we need to see the typ-
ical kinds of potentials used for elastic scattering, and also the binding potentials
needad to reproduce the usual single-particle structures of nucleons within a nu-
cleus. We will start by describing the most commeonly used optical potentials for
elastic scattering, expanding on the introduction In Box 3.4,

4.1.1 Typical forms

The interaction potential betwean a nucleon and a spherical nucleus is umally de-
scribed by an attractive nuclear well of depth V. with a radinz R, slightly larger
than the muclear matter radins, and a diffuse miclear surface. Most commenly we

125
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use the ‘Saxon-Woods' shapal

Ve
14+ exp (%)

As summarized in Box 34, the central depth V. Is typically betwesn 40 and 50
MeV, and the diffuseness . about 0.6 fm. The radius R, iz proportional to the
size of the nucleus, and is commenly around R, = . AYE for a nuclens of A
micleons, with r. = 1.2 fm.  Similar potentials can be used for the Interaction
betwean two nuclel with mass numbers Aq and Ax, if the radii are scaled instead
s A, = fr?,(}lif gt A;f 3), since this is proportional to the sum of the individual
radii.

Charged particles experience an additional Coulomb potential. This is differ-
ant at small radii from the point-Coulomb potential V. R) of Bq. (3.1.70) because
of the non-zero mean rading for the protons in the nuclel If thelr charge Ze s
uniformly distributed over a radius of Ragql = roouAY? for a nucleus of A nu-
cleons, then for an incident nucleon of charge Zge, the Coulomb contribution to
the potential is

V(R) = — (4.1.1)

; hrdd -1
5_ <
Voo (B) = Z,Z¢* x (?- R, ) Foon for B < Aeou (4.1.2)
R for B> Rewy -

The nuclear and Coulomb potentials are umally combined with an imaginary
and a spin-orbit part. The imaginary part, which is present at higher scattering
anergies ag discussed in subsection 3.1.5, is also often given by a3 Woods-Saxon
form

Vi
14 exp (—R;R"')

for a similar geometry F; 2 H. and @; & a,, and a depth 15 fitted to experiments
giving V; ~o 10— 20 MeV depending on energy. Scmetimes a surface-peaked imag-
Inary contribution is also included, with a shape like the derivative of Bq. (4.1.3).
All the parameters (depth, radii and diffusenesses) should come from some
model, or from fitting elastic scattering angnlar distributions. Usually the radii
for the imaginary parts will be slightly larger than the real radii, reflecting the ab-
sorption that cccurs from direct reactions just at and cutside the nuclear surface.
The real parts of optical potential generally get weaker with increasing labo-
ratory energy, with V. /88 =~ —0.3 for low energles up to about 20 MeV, but
less rapidly at higher energies. At around 300 Me¥ the real part passes through

W(R) = — (4.1.3)

1 plzo called 8 “Woode-Sazon’ (W5) or ‘Femi’ shape.
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The compilation of Perey and Perey [1] iz a2 useful listing of indiwidual optical
potentials for the many elastic scatfering reactions fitted up to the year 1974

The RIFL-2 Handbook [2] contain: a list of the most impertant global poten-
tials for both incident neutrons and protons:

¢ Koning and Delaroche [3] (Z = 12-83, 4 = 27-209, ' =0.001-200 MV}, and
s Madland [4] (Z = §—82, A = 12-208, £ = 50400 V).

Other older global potentials that cosser both incident nevtrons and protons are thoze
of

s Beochetti and Greenless [5] (2 = 20-92, A = 40-235, B = 10-50 MV,
s Walter and Guzz [6] (2 = 26-82, A= 54-208, E' = 10-80 MeV), and
s Vamereial [7] (2 =20-83, A =40-200, = 1§-63 MV

Older global potentials developed exclusively for incident neutrons are thoss of

Moldavuer[8] (Z = 20-83, A =40-209, E'= 0.001-5 MeV),

Wilmeres and Hodgzon [9] (2 = 20-92, A =40-238, E' = 0.01-25 MeV),
Engelbrecht and Fiedeldey [10] (Z = 20-83, 4 = 40-210, £ = 0.001-155 MeV),
Strohmaier ef 2l [11] (Z = 2341, 4 =50-95, B = 0.001-30 MV

For incident protons alone, there are the potentials of

o Menetetal [12] (Z=6-82, A=12-208, &' =30-60 MV,
o Perey[13] (2= 1649, A=30-100, B =001-22 MeV), and
s Patterzon ef al [14] (Z = 20-82, A= 458-208, ' = 2545 MeV).

Box 4.1: Compilations and global eptical potentials for nucleon-nuclens scat-
tering

Zero, and becomes repulsive at higher energies, where the scattering tends to be
dominated by the imaginary part.

The depth V. for neutrons iz typically less than for protons, and this difference
Increases for targets with large neutron excess N — Z, as neutrons attract protons
more than neutrons or protons attract each other. This effect may be parametrized
in terms of the projectile isospin operator £, as

1. N-Z

VI(E) = Vo(R) + gte 7 Vr(F) (4.1.4)

for an attractive ‘izoscalar’ component Vol ) and a positive ‘Isovector’ component

Vi (F). In this way, the central depths ¥, for protons and ¥, for neutrons differ by

N-Z
A

V, — Vy 2 50 ( ) MeV. (4.1.5)

There will also be spin-orbit forces that couple the micleon spin to its orbital
motion, of the kind to be discussed on page 135,
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For incident deuterons, the RIPL-2 compilation [2] lists the global potentials from

Bojowald izl [15] (2 = 6-82, A= 12-208, &' = 20-100 MeV),
Dachnicl ef @l [16] (2 = 20-82, A =40-208, E'= 11-90 MeV),
Lobr and Hasberli [17] (2 = 20-83, A = 40-2009, &' = 8-13 heV), and
Perey and Perey [18] (2 = 20-82, A = 40-208, B/ = 11-27 MV,

For incident tritons and *He particles, the global potentials of Becchetti and Greenless
[19] (Z =20-82, A =40-208, E = 140 MeV) are available.

Inthe case of incident alpha particles, there are global potentials from

MeFadden and Satehler [20] (2 = 8—82, A= 16-208, £ = 1-25 MV,
Avrigeanu ef 2l [21] (2 = 8-96, A = 1§-230, B = 1-73 MeV),
Huizenga and Igo [22] (Z = 10-92, A= 20-235, K/ = 144 MeV), and
Strohmaier ef 2l [11] (Z = 2045, A =40-100, B = 1-30 MV,

Box 4.2: Global optical potentials for scattering of deuterons, tritons, *He and
alpha particles

4.1.2 Global aptical patentials

H experimental data for a projectile scattering on a range of nuclel A at many
Incident energies are simultanecusly fitted by an optical potential with coefficients
that vary slowly with target mass number and energy, then a global eptical potential
iz found that will be useful for interpolation (and sornetimes extrapolation) to new
reactions and anergiaes.

The best-known global petentials for the scattering of protons and neutrons on
muclei are listad in Box 4.1, and those for the scattering of deuterons, tritons, *Ha
and alpha particles are listed In Box 4.2.

Tests have shown [2] that In general the reproduction of elastic scattering data is
worse with global potentials than using the specifically fitted potentials that appear
in compilations. It may be argned, however, that optical potentials should only
aver atternpt to describe some simplified average features of scattering, and that
hence global potentials are to be preferred. Global potentials, for example, would
net be perturbed by any localized resonance phencomena, o the possible existence
of scaling errors in the data from a specific experiment. The theory of averaging
neaded to derive an optical potential will be discussed in Section 11.5.

4.1.3 Folding potentialz

Sometimes, instead of specific or global potential, a density distribution of the
target nucleus is known from electron scattering or from structure calenlations. In
thiz case, folding with, for example, the TLM potential [23] iz one way of obtaining
a micleon-nucleus potential. The theory for folding will be given in Section 5.2.
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Fig 4. 1. Neutron cigenstates nj" in a Zaxon-Woods binding potential, for spin j, parity
7 and number of redial nodez n. The chozen potential has V=566 MeV, r =117 fm,
a-=0.75 fm, ¥,,=6.2 MV, r.o=1.01 fm and #,,=0.558 fm. Both radii zcale with A a=
R =rAY® The occupation numbers are 7. = 241

4.2 Single-nucleon binding potentials

Before we can discuss the transfer of nucleons from one interacting nucleus to an-
cther, we nead to specify how they are bound (or unbeound) in their Initial and final
states. Mucleons are bound inside nuclel, and as a first approximation we can con-
sider them bound by the average attraction of all the other nucleons. This average
potential will be very similar to the optical potentials we used above for scatter-
ing, but only the central and spin-orbit parts, without the imaginary componentis).
(We discuss below a possible significance for the imaginary parts)) The elgenstates
in the average potential are called simgle-particle levels since they ignore higher-
order intaractions and correlations. Wa will usa v to dascribe the coordinates of
the mucleons withis a nuclens, along with the previous R to describe the relative
coordinate of two scattering nuclel, and the respective angular mermenta will be £
and L. Many kinds of forces are equally useful in both circumstances.

4.2.1 Newmtron and proton single-particle states in nuclet

Leat us take a typical combination of central and spin-orbit potentials. The cen-
tral potentials are given as in Bq. (4.1.1), and details of the spin-crbit forces will
be given in subsaction 4.3.2. Figura 4.1 then shows the elgenenargies of single-



130 Reaction mechanisms

Whitiaker functions

Bound states are solutions of a Schridinger equation for negative energies £ that cor-

respond to wave numbers & = o/ —2p B /RS that are positive imaginary (zee Fig 3.4,
That iz, bound states have & = ik with imaginary part &7 > 0, and have Sommerfeld
parameter of Eg. (2.1.71 that iz alzo imaginary: n; = — 51 Zae pf (Kokr ).

The Coulemb function nesded for bound states is the outgoing function H (7, o), as
bound wawve functions can be matched to thiz form sverywhers outzide the nuclear
potentials. Thiz &Y function iz not suitable for all bound states howewer, as it is not

everywhere defined, such az whenever 1 4+ L + in = 0 (thiz occurs for bound states in
a purely Coulomb attractiwe well).

It iz therefore commeon to uze a Whitéaker function that is ¥+ rescaled as
: —m —ilmw¥
W, o3 (2ip) =7/ STt el gk (g ) (4.2.13
Zuch a Whittaker function, from Eq. (3.1.69), haz asymptotic form
Wi et 1(210) =m0, g mafi—inlalzg (4.2.2)
and, for bound states with p = ikyr, thiz becomes

W_ o3 (—2017) = o, o7 7R REEID (4.2.3)

For neutral particles this iz the familiar exponential decay, and for charged particles
the Whittaleer function has a logarithmic wariation arizing from the Coulomb potential.

Box 4.3 Coulemb functions for bound states

particle levels for the fixed potential parameters given in the caption, pletting the
results as a function of miclear mass A, by scaling both the radii as A¥®. The
mlfiple levels depend on the quantum numbers for metion in the r coordinate:
angular mementum £, intrinsie micleon spin 3 = 1/2, and tetal spin § = { £ .
The levels can be labeled by ng™ for parity m = (—1)%, or equivalently by né; 2
and whera = = 1,2, ... is the number of nodes in the radial wave function.® The
individual nucleons have wave functions ¢ . (r) for the bound state b, namely
angular and radial factors as

qﬁ?;j;b(r) = [}/}(E) i Xs]j'm ﬂfs}';&('r :Jfl'r, 424

with X, the state of the nucleon’s intrinsie spin. They have boundary conditions
ey 0) = 0 at the origin, and goto zero as

e p(1) SewRn CeW_p eyt (-207) —ropy Cre™ " —ca 0 (42.5)

? Following atomic spechoecopy, we use names 5, p, &, f g ete, for £ = 0,1, 2, %, 4 mepectively. The lowest
three levels in Fig. 4.1 am then equivalently named 18y, 1psm and Irypn
& Here we indude the node at the origin, =0 start counting with # = 1. Another comvention iz o include coly
modez at+ = 0, md therfore tostart atm = 0.
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putside the maxirmm rading R, of the nuclear potentials, for some constant &y
The W, (2] are the Whittaker functions defined in Box 4.3. The bound states are
neormalized as

f [#52(e) [ de = f [gagip(r) |*dr = 1 (42.6)
a

for all magnetic substates .

We see that the lowest level is for # = 0, labeled 1/2% (or 5, s2), Tollowed by
a closely-spaced palr of # = 1 states 3/2 and 1/2~. Thiz pair iz called the p-
shell. Higher in enargy is the sd-shell with three levels 5/2+ 1/2% and 3/2%, and
in heavier nuclai there i1z a pf-shell higher again. The second 1 f?"‘ level, in tha
sg-shell, will have an additional radial nede in its wave function, compared with
the first such level In the s-shell. Single-particle levels for protons will be similar
to thess, but with a medified depth according to Bq. (4.14), and with thelr levels
raized in ensrgy by the average Coulomb repulsion.

The number N of nentrons and Z of protons to eccupy these single-particle
levels depends on the isotope A = N 4+ Z. The maximum occupation numbers for
each level are the values n. = 27 + 1 in Fig 4.1. A %0 mucleus, for example,
has I = Z = B, so each species of nucleon fills its s- and p-shells, fwe adopt the
simnplest filling order from lowest to highest energles, and neglect changes caused
by more complicated mixing and correlations. We often use thiz single-particle
filling prescription as a first approximation.

Mucleons occupying states In a nucleus can be seen in pickup reactions that
remove one of the low-energy nucleons. It will leave a hole, which, i the heole
iz below cther ccoupied levels, ampunts to an excitation energy of the residual
micleus.

The energy of the highest ocoupied level iz called the Ferm! energy Ep, and
levels above this are uneoccupled. Thess unoccupied levels can be seen in tamnsfer
reactions that bring another nucleon into the nucleus.* If a newly occupied level
after a transfer reaction iz above another uncccupled level, then it also represents
an excited state in the residual miclens.

In nature, nuclzon bound states will never be exactly at the single-particle levels
shown in the figure, because of higher-order effects which go beyond the spherical
potential medel. Single-particle levels may be shifted, and also fragmentad among
all the true eigenstates ofthe A-body system. The effects of this fragrmentation will
be described by overlap functions, the square norms of which are the spectrascoplc
facters (to be defined later), which will in general be different from unity.

To accommodate the energy shifts, it iz normal to fine-tune the precise strength
15 of the central potential to reproduce the experimental binding energies. This

4 Sometimes these aw called *sitipping’ reactioms, but that word is often used for pickup reactions as well
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guarantees the correct exponential tail of the wave function (necessary, we will
see, for sub-Coulomb transfer reactions), and also the post-prier equivalence that
should be obtained for first-order DWBA transfer cross sections.

When the binding potentials are too weak to bind a given single-particle level,
then it will become unbound, and while it iz still not too far above thresheld it
will be visible as a resonance or a virtual state. As discussed on page 05, states
with # = 0 and no Couwlomb barrier will becoms virtial states, and the others will
become resonances. We generally assume that the potentials for the contimmm are
the same as for bound states, apart from the energy dependence mentioned in page
127

In betwean resonances there are still scattering states, called the nown-resomant
continuum, since a Hamiltonian has elgenstates at every positive scattering energy
E = R¥k® /2, as described in the previous chapter. We may label the correspond-
ing wave functions by ¢, (r; k), or equivalently using £ rather than &. The wave
functions in the one-channel case are factorizable as

qﬁE_?-I:[';FC:J = [Y:?(EJ ®Xs]:."m ﬂfs}'('ri 'ic).-;'r! ';4-2-7;'
where the g (7; k) are externally normalized as usual for scattering wave func-

tions: proportionally to %[H ~ — SH*]. This asymptotic normalization gives the
overlap integral of two radial functions as

[wia]
f U (71 K tagay (11 &) dr = gﬁ(ﬂc — &, (42.8)
0
It is therafore commen to renormalize continunm states using

figa (11 = /2T vaey(r; k) (4.2.9)

so that we now have an orthonormmal set
[wia]
l[ﬂmmm%mmmw=ﬂbmw 4210
0

Cther renormalizations are possible to give d-functions in energy £ Using the
fifr) wave functions, we can give the completensss relation when all the bound
and scattering states are combined:

[xa]
3 fey (7)) ey 577 |+ f dk [fieey(r; K)) (fieas (' )| = 6(r =7}, (4.2.11)

&
for each partial wave f37.

Resonances, in this basis, are just concentrations of strength at particular ener-
gies, as measurad by the magnitudes of wpy,(r; &) In the nuclear interior, so reso-
nances should #et be Included as explicit terms in addition. A sim over resonances
can only be given, Berggren [24] explains, if we deform the complex contour of the
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k integration in Bq. (4.2.11) so that it goes below some of the narrower resonances
that are near the real k axis.

4.2.2 Optical potentials exiended to bound states

In the previous section, we described the binding potentials giving all the single-
particle levels for occupation in a simple uncorrelated structure model of the nu-
cleus. Consider now a full nucleus, where all the levels up to the Fermi energy are
cccupled. The occupled states above the Fermi energy are candidates for further
mucleons that can be transferred i, and the occupled states below the Fermi energy
are candidates for where nucleons can be picked out In a removal reaction. Thatis,
in thiz “full miclens’ case, we Interpret single-particle states below the Fermi level
to refer to muclear states in the A — 1 system as specific holes in the A-nucleon
state, and interpret single-particle states with £ > A'p to refer to nuclear states in
the A + 1 systern as specific particles added to the A-nucleon state.

Holes or transfer states that are away from the Fermi level, and hence describe
ancited nuclel, will of course decay with some decay lifetime 7. This may occur by
- emission, of by &jection of other micleons in the system, and the finite lifetime
gives a spreading widih to the excited state by I' = A/7, as for a resonance. It is
callad a “spreading width’ becauss the initial single-particls excitation Iz spreading
into other modes of nuclear excitation.

This decay lifetime may also be described by an imaginary potential WiR) <
0, according to the factor e~2WI¥% in Bq. (3.1.109). In this way, therefore, we
may extend the complex optical potential to bound states at negative energies, to
describe the loss of flux from excited nucleonic states to more general nuclear
excitations, such as statistical compound-nuclens modes. We choose the optical
potential to give the correct decay times for excited states away from the Fermi
level. Clearly this extendsd optical potential will have an imaginary part which
goas to zere at and near the Fermi energy, and will have an absorptive component
that will grow as |& — Ep| Increases.

4.3 Coupling potentials

Mowthat we have defined central potentials for scattering and bound states betweean
mucleons and ruclel, we are able to give detalls of the off-diagonal potentials that
couple together different partial waves within a mnlti-channel set. Thess coupling
potentials describe processes that usually transfer angular momentum and energy
from one Interacting body to ancther, so we begin with an analysis of their multi-
pele structura.
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4.3.1 Multipole analysis of transition patentials

We are here concernad with an interaction part Hiqy of the Hamiltonian that is
responsible for the coupling between distinet states of a muclens, and its orbital
motion, as the nucleus interacts with another. The Hamiltonian itself is a scalar,
which may be constmicted as a sum of transition operators of multipeles A forbeth
the micleus and its spatial erbit. Foreach A value, let the orbital angular transition
operator be the spherical harmonic }ﬁ‘m(f\“.) and the nuclear transition operator be
T,(£) for the necessary internal coordinates £ of the nucleus. The A-multipole part
of Hiner Is the acalar product of these:

+24
Hp (6, R) = Vir Fa(R) Y T8 YP(R)

m=—2

= Vir Fu(R) Ta(8) - Ya(R), (43.1)

where /4, ( R) expresses the as-yet-unknown radial dependence. The +/dm iz a
constant chosen so that a monopoele equation gives Ho, (&, R) = Fu(R) when we
adopt a normalization of 7 = 1.

The quantity A is called the multipolarity of the reaction, or angular momentum
tnansfer. The A = 0 case describes moropole (scalar) transitions, which are either
diagonal (like the optical potential), or off-diagonal couplings between states of the
same spin. The A = 1 describes dipele (vector) transitions and 2 the quadrupels
(tensor) processes.

Most often, a given reaction mechanism changes the spin state of only one of
the interacting palr of nuclel, the spin of the other nuclens not being dynamically
coupled. In thiz simpler case, the T and S coupling schemes of subsection 3.2.1
both reduce to |(L1)Jy ). In this basis, the R-dependent matrix element of any
coupling Harniltenian (4.3.1) may be found by integrating over all variables except
F, obtaining

':(Lfff:'JtDHHitr(fs R)|( Ly 1) Fon ) = VT Fu(H)
. L; L J
G Al i DA PV P EAPACEES

by Eq. (1A-72) of Bohr and Mottelson [25]. The reduced matrix element of the
spherical harmonic, with & = +/2x+1, Is

(L7 || ¥ || Zs) = (4m) " EALs (L0, A0|L£0) (43.3)
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when using the Wigner-Bckhart theorem with the normalization of [25]:8

_ . (i, gm| Jpmg) s
(g |Opmliima) = = (416515 (434
We now define a frapsition potentia! to include the nuclear reduced matrix elerment
for a specific pair of states:

VA(R) = FA(R) ;| T || &) (43.5)
for some Fy( B) called a form firctor, so we henceforth use the general form
(L £ 25) oo | H e (8, R L ) oot )

— V}il:R:]l:—1)A+JWL+L€+IJ‘5~E§,{L£D, }'-DlLfD:I {Lf‘, I Jiat

436
Iy Ly /‘} 29
= 1 AT L-LeiFor T .

= VA(R)(-1) Ao (Ls0, A0|L 0V W (L L Ly 5 Foe A

in terms of the 6] or Racah ceefficlent: W of angular moementum theory. The
total coupling between two states Iz the sum over all multipeoles of the terms In
Bq. (4.3.8).

When there are spins In the set of coupled angular momenta that are spectators,
in the sense of not participating in the dynamical transitions, rearrangements of
the coupling order mmst be used in order to 1sclate those sping actually invelved.
Expressions are then obtalned that are similar to Eqs. (4.3.4), but are more compli-
cated, and contain sums over additional Intermediate quantum mimbers.

In later sections, we caleulate the transition potentials V;(R} using the Fy(f)
formn factors that may be commeon to several states {, f. These functions of the
Internuclear separation F are determined by the physical reaction mechanism, and
will be different for different target nuclel, and different for single-particle and
collective processes. For transfer reactions we will find that the form factors will
be non-local.

4.3.2 Spin-dependent potentials

The monopele diagonal potential A = 0 has the simplest form Fo( f), and could be
one of the folded or optical potentials that we have used to describe the interaction
of two miclel before any non-elastic reactions occur. Typical optical potentials have
dlready been discussed, and folded potentials will be described In Section 5.2.
When nuclel are Interacting that have non-zere spins, nen-zere multipols com-
ponents may have an effect even if the muclel stay in thelr ground state. Typlcally,
A =1 vector potentials and A = 2 texnser potentials may be present, upto A = 23,

% Mote that reduced marrix elements aw defined differently from this in [25].
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which iz twice the medulus of the sum s = 3, 5; of the spins s; of the interacting
bodies.® Individual nucleons have spins 1/2, so A = 1 multipoles may contribute
to the scattering of nucleons on any other body. Pairs of nucleons may have total
spin s = O or 1. The deuteron ground state has s = 1, for exarmople, and in general
A = 2 tensor forces may operate during the scattering of any two nucleons in an
3 =1 state. Meither of these vector or tenszor forces changes the energy eigenstate
of a particle or nuclens.

Vectar farces

The most cornmen vector potential iz the spide-orbit force. This A = 1 force can
couple a single 5 = 1/2 nucleon with its orbital metion with 71(£) = s, the spin
operator itself. Thiz gives

Vio = F3°(R) 2Les (43.7)
of which the matrix elements may be caleulated in the Tbasis J =L 4 = as

((Ls)J|2Les|( L) JY = J(J+1) — LIL41) — s{s4+1)
_ { +L for J=L+1/2

—L—-1 for J = L-1/%, 4.3.8)

so only the diagonal {{ Ls)J|Voo|( L) d) = F3(R) [J(J+1) — L{L+1) — s(s+1}]
elernents are non-zero. In the 5-basis of Bq. (3.2.2), the spin-orbit force gives
off-diagonal couplings.”
In comparizon with electrons In atoms, for which the spin-orbit petential is
iThomas [27])
1  1dV(A)
2micER dR

FE(R) = (43.9)
in terms of the central (electrostatic) potential V{ E), the nuclear spin-orbit force is
mmch stronger. If this formmla is used directly for the miclear spin-orbit forces, it
iz found to be too weak, requiring an amplification factor cormmenly taken as 25.
In practice, negative spin-orbit form factors F5°( K are still taken as having this
‘Thomas form' as derivatives of the form of a miclear central potential, but with a
scaling factor that iz sommewhat arbitrarily fixed in terms of the plon mass g

AohvE1od W
) = (4.3.10)

ﬂD(Rjz (HC, Eﬁl-l—exp(%)’

& e prefer to uee @ for the zpin of & zingle oucleon or a very light cluzter, and T for the zpin of a compozite
mclens.
T Thiz is one small but veeful advantage of the I-basis formulation.
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so At f{m,e)® = 2.00 fm?, and F2°( R) has the same units as V. This requires a
potential factor of the order of Vi = 5—8 MeV for muicleons® .

Ancther simple spin-dependent force possible with two nuclel both with spins
(Ip and I;) Is the spin-spin force Vg = FIE(R)L; - I;. In the S (channel-spin) basis
of Bq. (3.2.2) the spin-spin force is diagenal, with matrix elements

(L Ty 1) S Foot |V | L Ty T3] 5§ Fiot )
= FE(R)LS(S+1) — L{LA1) — L(L4+1)]. (4311

In the Tbasis (Bq. 3.2.1) there are off-diagonal couplings from the spin-spin force.

Tensor forces
An s = 1 cluster can be Influenced in its orbital metion by a A = 2 (rank two)
tenszor force, as can the metion betwsen two 5 = 1/2 nucleons when they are

togetherin an 5 = 1 (triplet) state. These tensor forces do couple together different
L # I/, in contrast to vector forces (rank-one tensors).

For an object of spin s, Satchler [28] showed that there are three generic kinds
of rank-two operators that could be used for tensor forces. These couple the spin
with either the radius, mementum or orbital angular mementum vectors, vielding
forms corventionally written as

T=(s RF-1 (4.3.12)
T = (s-p)* - &’ (4.3.13)
Tr = (s L)*-18.L-IL% (4.3.14)

where R is the unit vector in the direction of . All of these quadmpole forms
need to be combined with some radial form factor F; (R, which may be complex.

44 Inelastic conplings

An Inelastic reaction iz one where a nuclens changes its energy elgenstate, from
state € to state f, when Interacting with another micleus. The inelastically ex-
cited miclens changes its energy from «; to ep, determined according to the eigen-
equations of Bg. (3.2.39). The energy §)-value for the reaction is therefore @ =
g;—€ g, s thiz Is the energy released, and is only positive i the nucleus 1s de-excited
with Ef < Ei.

An Inelastic reaction will usually change the spin of the micleus, by some trans-
fer of angnlar momentum that is the multipelarity A of the reaction. This angular

Z Mol that sometimes zpin-orbit forces are defined with L - = in place of the 2L - = in Eq. (4.3.7), andfor
sometimes without the B2/ (my 2)%, and these mdefine the munerical strength factor 154
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mommentum iz usually transferred from the orbital angnlar memenmm of relative
motion, but semetimes directly from the other interacting nuelens. If the initial and
final meclear spins are I; and Ip respectively, then there holds a triangular relation-
ship A(A Ly Ig), or

| — Ip| = A=< L+ 1g (1)

Thus moncpele transitions keep I; = Iy, and dipele transitions (A=1) change I;
by L at most.

Novmal parity transitions change the nuclear parity only for odd A mmltipoles,
and all transitions caused by central forces are normal in thiz sense. Other ‘non-
normal’ transitions may cccur when spin-dependent forces change nuclear spin
orientations during a reaction, but these are generally weaker processes for relative
velocities v < e (the speed of light).

Inelastic transitions in a nucleus are caused by the interaction with a second
mucleus, which may act by electrormagnetic and/or nuclear forces. The nuclear
forces may be central, or may couple to the spins of individual nucleons. The
electromagnetic forces are almost entirely electric at low and medinm energies,
and are therefore principally the Coulomb forces which couple to the charges of
the protons.

I Coulomb forces contribute to the inelastic transition, then for & outside the
radii K, of the nuclear potential, the Inelastic form factors have characteristic forms
as inverse powers of F*+1. We will in Bq. (4.4.25) be defining a Coulomb reduced
mutrix element (I || B || &), in terms of which

ReRa (Lf||EA||L) vdmet 2,

A
VAR TS et NERE (44.2)

whare we factorize out Zie, the charge of the sacond nucleus.
The quantity

BBA T, = Iy) = 5o 0y | B | 1) 443)
iz called the reduced transition probabiillty, and the rate for peripheral reactions
depends only on B{ &M, L — Iy), and no other structural property. These may be
low-energy photonuclear reactions, gamrma decay processes, or very forward angle
{or low-energy) Coulomb excitation reactions. The value of B{£A) Iz thus some-
times a good contact point between theory and experiment, at least for Coulomb-
dominated processes.

The reduced matrix element, as defined, will be symmetric,

g L& T = (] &2 ] Il (44.4)
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50
(24+1) B(EX, L — If) = (2I5+1) B(E£x,I; — L), (4.4.5)

and the ‘up’ and ‘down’ B[ £A) values will be different (except when I; = I

To find V;(Rj at sronaller radil, we need a potential meodel for the cause of the
reaction. This meodeal could be a retational or vibrational collective medel, a singla-
particle excitation medel, or 3 more micrescople caleulation of the many-body
miclear states and how they Interact with the second nucleus. The collactive and
sngle-particle medels are now described in turn, while the use of micrescopic
moodels 1z discussed in Chapter 5.

4.4.1 Colfective inelasiic processes

The most common collective models for nuclel considar the rotation of a deformed
muclear shape, or the deformational vibration of a nucleus that is initfally spherical

Rotational inelastlc excikation

The simplest rotational medel defines a deformed swface of a micleus, and con-
structs the miclear interaction potential as a function of the distance to the surface
dlong a radial line. This ghves natiral parity transitions ameng members of a given
rotcetioncl band of a nuclens. These bands are a set of states of spin I that start
from some bandiead I = K, and have excitation energles typically like

i
e = % F(I+1) — K(K+1Y], (44.6)

where Ad 1z the moment of inertia of the miclens. The moment A4 will ba constant
for the rotational band of a rigid rotor, with value

2
Mugd = cmu ARy (44.7)

for average surface radius Fq and i, the unit atomic mass {amou). The value of K
isthe projection of the intrinsic nuclear angular momentum on the rotational axis,
and hence the smallest possible value of rotating spin . Retational bands with
E = 0 will conzist of the set of even levels T = 0, 2, 4, ..., wheareas bands for
K = 0willhave all levels T = K, K41, K42, afc.

A deformed muclens iz considerad to have an imtrinsic state in a body-fixed frame
af refevence (v', &, @) that can be defined by placing the 2* axiz along some axis of
deforrnation symmetry. The varying radins R of the surface of a deformed nucleus
can always be expanded using spherical harmonics in terms of polar angles # and
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Fig 4.2 Anucleus iz rotating about the = Llaboratory axis, and iz itself a deformed object
with axiz of symmetry along the =° axis that continuously varies with respect to =. The
interaction potential of anether body at & with a deformed object of radius A(§", ¢') may
depend on the radial distance B — R(#*, ¢) to its surface.

@ in the body-fixed frame as

Joax  +4
R, ¢)=Fa+ ) > du¥3(0, ¢, (44.8)
9=I p=—9
where ¢, If sufficlently large for the desired accuracy. We are only interested
ing > 2as ¢ = 0can be included in Fg, and ¢ = 1 moves the center-of-mmass.
Requiring R(#, ¢) real means that dy,, = (—1)#d,_,, sonot all the d,, are inde-
pendent. The Fy iz the average surface radins of the potential
The most commen dy,, Iz ¢ = 2 for quadmpele deformations. Axially deformed
muclel only have @zp non-zero, whereas a triaxially deformed micleus has azp =
ttz—z also non-zero. The dg, have units of length, and dgp Iz usually called the
deformation length 64, The fractional deformation is

B = & /B, (44.9)

A prolate deformed nucleus has F; == 0, and oblate deformation oceurs with §z =
Q.

In the simplest rotational model for a deformed surface, we describe the inter-
action V7 with the second nucleus as depending on the distance to the surface as in
Fig. 42

V(R,¢,¢) = U(R - R(#,¢) + Ry 4.4.10)

for some suitable nuclear potential function Z7{ &) such as an optical potential. The
first step iz to expand the potential of (4.4.10) inte a sum of tensor compeonents like
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Eq. (4.3.1). A simple approximate procedure is to expand U7 K — F(¢', ¢) + Fg)
to first order in the g, which should be satisfactory for small deformations. This
givas
V(R,,¢) = UR) - U'(R) 3 dgu Y7(¢, #) SERRY
gp

where the first term I ) iz the diagonal optical potential
For an axially-deformed rotator, the first-order result gives multipoles A = ¢

V(R,#,¢) = U(R) — U'(R) Z Y2, ). (4.4.12)

Now (6, ¢') are the angles between the laboratory vector R and the axis ' of the
body-fixed coordinate system, so (as i = Ohere)

V(8 ¢) = %Pﬂcosﬂ %4—“2 YEYT(R)Y, (4413

so the dependence of the potential V7 is now
V(R R) =TU(R) - U'(R) S B SOYPEYP(R)Y. 44149
A mn

This interaction can change the state of the deformoed nucleus by the non-zero
matrix elements (¢r, [V( R, £,R)|¢r,). Here, I is the initial spin and Iy the final
spin of the rotating nuclens. We may construct the rotationally excited states TAS
as the intrinsic state ¢y operated on by a rotation matrix D]{&r wlw] where w is the
sat of Buler angles that transforms (&, ¢) in the body-fixed frame to (&, $) in the
laboratory frame. From the normalization property of the D (), a normalized
state of such a rotor is

I
P = ——
Bt
We are now able to calenlate the matrix elernents of the potential (4.4.14) betweean
rotational states (4.4.13), using

(TpMp [V (€] | LML)

Diop(w) b (4.4.15)

if o
= &t fd”':i’K'Dﬁf r(W)Y3™ Dy g () |5}

Lf; A .
= Vo f Dl (W) P2 o (@) DEgy, _g(w) (—1)K- M

5

= — L (LK, O K) (LM, dom| Ty, (4.4.16)
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since ¥y™ = Af/ 3T (w)*. Using the adopted definition of a reduced matrix

alement, we find that the integral over the core angla gives the factor

(I || ¥ || &) = ——=T (LK, MO TRK ), (4.4.17)

'\J"I{‘E

These reduced matrix elements give a transition petential In the rotational modal

of

Oy
N/

which enters into BEq. (4.3.49) to complete the partial-wave matrix element.

VA(R) = - —2= U'(R) L{LK, | K), @418)

The Coulomb interaction between a deformed charge density of Z; protons and
a second nucleus of Z; protons does not depend on just the distance to the surface
ag the miclear force does, but on a more global integral. Let the combined pro-
ton probability density distribution g, (r) be normalized as | g (r)dr = Z,. The
electrostatic potential from these protons iz then

Vo(R) = E‘fdr l;‘?(_rjrl, (4.4.19)

where these coordinates are in the laboratory frame. Using

1 4
R_r| 2 2;1 V() Yy (R)F (R, 7) (4.420)
ey

with the ‘near field' and ‘far field” forms

B et for Ry
Ryl = - 4421
(&) {TAKRA+1 for Rz ¢ )
mspectively, then

Hinyr = e, Ve(R)

ArZ, et
- X o K*#':R:'f VP F(R, ) op(r)dr.  (4.422)
ey

Comparing this with Bg. (4.3.1), we find that the rotational form factor is

_ fAw et

FAR) ) = Y

[r@r@name @42
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s0 the matrix elements for transitions from muiclear spin I; to 7 are

v’%& et

el RAGHELXGY B

R VATEZ (I | Y (e)r pg(r) || )
2341 R}'.+1

VA(R) = (| Rl E) =

. (4.4.24)

We define the numerator of the second term as the Coulomb reduced matrix element

(I3 | B || LY = (T || Y (e, () || L) (4.4.25)

For a deformed sphere of constant internal density with deformation length 4, and
mmean radius A, the rotational picture gives an approximate value for this matrix
elernent of
-1

e 1 83 5y = 225 e ol k). 4420
The accuracy may be improved by taking the Taylor series bevond Eq. (4.4.11),
tosecond order in the dy,,. This gives rise to tensor products 5@ ¥y¢, which couple
up to A satisfying |g — ¢'| = A = g + ¢, This means that second-order terms
contribute also to the moncpele parts, changing the diagenal distorting potential
There are also now A = 2¢ multipeles, allowing direct excitation of, for example,
0+ — 4+ transitions for ¢ = 2 quadrupole deformations.

For best accuracy, a result accurate to all orders in the ¢, may be found by
carrying cut a numerical angular integration in the body-fixed frame for the overlap
(¥4 (R)|T( B— R(8', ¢ )4+ Hq)). For axial deformations, this is an integral over &'
only:

yofH _
FulRH) = 5-[_1 U(R—F{8")—Fg) Py(cos ¢ )d{cos &), (4427

and here

Jonas
- 241
r _ _ !
R—R(#)+Fy = R ;_2 &y ﬁf—mr P,(cost') (4.428)

for deformation lengths 4,

Sometimes, particular information abeout specific transitions iz available from
structure calenlations, or from other experiments such as lifetime measurements.
Including thiz knewledge will require changing by hand the values of Vf’\j‘i(Rj for
speciic I3 — Iy transiions. This Is a way in which previous measurements of
B{ &M I; — Ig) may be taken into account.
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¥ibrational models of miclel give rize to Inelastic transition potentials with forms
simnilar to those from the rotational medel.  The excitation of quadmpele one-
phonon states in a nucleus will give a 27 state, and then two-phonon states consist
of two phonons of energy which can be coupled togsther to give a triplet of 0%, 27
and 47 states at approximately twice the first 27 energy. Octupcle phonons also
may occlr, generating a 37 excited state with one phonen of energy.

The theory of vibrational nuclel may be developed along the same lines as above
for retational couplings, but now the &g, are operators which change the state of
the nuclens by exciting phonon states, with one or more phoneons. ¥ibrational
models are described in detall in, for example, Eisenberg and Greiner [29].

For a given B £A), the vibrational model vields the same off-diagonal couplings
a5 does the rotational medel, but the diggenal re-orientation couplings are zero.
This reflects the fact that a purely vibrational 2% state, for example, has zero static
quadmipole mement. Real miclel are usually between the pure limits, and have
some small static quadrupele moments even for vibrational excited states.

4.4.2 Single-particle inelastic procesres

Sometimes the state of a mucleon {or cluster of nucleons) in a nucleus changes be-
cause of differantial tidal forces when interacting with a second nuclens. Consider
the change of state of a valence mucleon or cluster o from initial state @y ;. (r) to
P, Bj.-f(rj, so that, when bound to a core ¢ of spin I, the inelastic transition is from
({o3:) 1 to I:chf)‘rf'

The potential model to generate this transition describes a three-body system
with core ¢, valence v and target £. The model iz defined by the three massas m.,
il and 1, respectively, and the three palr-wise potentials V., (r), Vu(ry,) and
Vo(ra), where the coordinates oy and vy, as shown in the diagram, are related to
K and r by

r. = R+—r
r- = R— —r, (4429

where iy = . + 7y, the total mass of the miclens being excited. The transition
arizes as a tidal effect because naither ¥, nor V2, act just on the center-of-mass at
F. If we consider the principal central parts of thess two potentials, then the core
spin L., micleon spin 5 and target spin I; are all spactators. The inelastic transition
potential is therefore

Vi R) = ({Lpdp)A|Vig 4+ V| LR A), (4.4.30)

where L;, Ly are the iInitial and final orbital angular momenta of relative metion,
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and A = L + J is thelr sum which iz a conserved angular meomentum. The sum J
isto be combined with 5, I and J; to give the total spin Jio for the whole system
With 15 and Vz depending only on the length square roots of

me 2m
ri o= R* 4 HCTZ + —=FRrz

P T
z
2
vl = RE4 Depr g, (4.431)
mi My

where z = R - i, the cosine of the angle between K and r, all the effacts of Ve
and ¥, are in the two-variable mmltipele function

FalBr) = %f

+1
. [Vat(Tae) + Va(ra)[Pa(z)de. (4.4.32)

In terms of this 7, (A, ) the potentials in the matrix element (4.4.30) are

Var + Ve = > (2A+1)F(R,7)Pa(2)
A

= D (DHLF(R,) Y OIEYR(R). (4433
A i

H the single-particle states have angular and radial parts given by Bq. (4.2.7), then
the transition potential for multipele component A iz

V;(R} = -L ﬂffsj'fli'r).?"_AI:R,T:Iﬂfésj'éliT:IdT M (€0, AD|€;00, (4434

4.5 Particle rearrangements
4.5.1 Transfer reactions

In a transfer reaction, a valence nucleon (or cluster) is transferred from the projec-
tile to the target, or vice versa. When this Is transferred from the projectile it is
often called stripping, and when it 15 added to the projectile from the target this Is
plckup®

For transfer processes, as for single-particle inelastic excitations, we use R to
tefer to the difference of the projectile and target positions, and r to the relative
coordinates of the valence cluster to its core. For mass-transfer reactions, there
will be distinet pairs of vectors in the initial state R, r, and in the final state B, ¢’
because, by recoll effects, the vectors B # R’ as shown In Fig. 4.3,

Let us consider the specific case of stripping, that 1s remeving a nucleon from the
Y IMote that sometimes the word ‘stpping’ i=1med to mier io any removal process from the projectile, inclnding

eay breakup snd more complicated mactons, butin thissection it mfers only o the Tansfer o a specific bowmd
state aromd the target.
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Fig 43 Coordinates used in a one-particle transfer reaction.

projectile. For now we deal with the simpls case that ignores the core structure and
treats its spin as a spectator, and assumes that the composite nucleus 1s uniquely
cormposed by a single bound state. The Initial bound state of the projectile g (r)
and the final bound state of the residual nuclens gu(r') then satisfy the sigenvalue
equations

[Hp — £p]@p(r) = 0 where Hp =T 4+ V(r)
[H: — 2] @u(r") = 0 where Hy = T 4+ 13(r). (4.5.1)

The binding potentials V(r) and V(') are usnally fitted sothe sigenenergies agree
with experimental separation energies, using the methods described In Section G4,

The g-value for the reaction, the amount of energy releaszed during the transfer,
is ¢ = £, — £, In terms of the binding energies B = —& which are positive for
bound states, the ¢-value is @ = By — Dp.s0 By = Bp 4+ .

The dynamical details of the transfer coupling arise from the matrix elements of
the Hamiltonian for the three bodies invelwed: the initial and final cores, and the
valence particle. This Hamiltonian is

H =T+ Tk + V(r) + Va(r') + Uso(Re), (4.5.2)

where . R.) is the core-core optical potential. The pair of kinetic energy terms
can equivalently be written 97 + Tg = T4 + TRy, so there will henceforth be
two ways of expanding the Hamiltonian as we have already seen in Section 3.2.2.
Thesze are callad prior and post:

H = Hypo = Tr + Ui R) + Hylr) + Vi(R,r)
= Hpcet = The + U (A + HoX') + V(R &), (4.5.3)
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wharae the U; ¢ are the entrance and exit diagonal potentials respectively, so the
interaction terms V; and Vy to be used must be

V{,(R: [':J = V;(r!) + Uc"c(Rﬂc) - Uﬁ(R)
or Vi(R,t') = Vi(r) + Ure(Re) — Up (). (4.5.4)

It is these Interaction terms which cause the transition from one bound state to an-
other, since the other terms In the post and prior Hamiltonians are diagonal with
respect to transfer channels. The first part of the V} ¢ Is the binding potential, and
the remaining two terms are called the remaant tewms, which, as they are often
sirnilar in magnitnde and contain complex potentials, are sometimes neglected for
comvanience. The post and prier forms give exactly the same results in first-order
DWEBA, az was shown on page 101, With sufficient numerical accuracy this equal-
ity should held also in practice, and this equality requires that the remnant terms
be always includad.

The matrix elements of these interaction terms are now found for the case of two
transfer channels. Using the model space™

T = [#(r) & Yi(R)| R(R)/R+ [8() 0 V()| 95(R)/R, @55)
we need to find transition matrix elements such as
VR(E, R) = B{#(c) & YL(R')] | Vo | [85(r) ® VE(R)4)RTY, - (45.9)
with o =, f for prior and post interactions respectively In Bq. (4.5.4).

Finite-vange transfers
This matrix element is a non-local Integral operator, as it operates on the fune-
tion 4f;( ) to produce a function of A, We therefore derive the non-local kernel
VE (R, K} sothat the matrix element operation on a wave function, which initially
involves a five dimensional integral over r and R, may be calculated by means of
a ona-dimensional integral over h:

O(R) = | VAR, AR 457

Such a source termn may be used, for example, in the Green function integral meth-
ods of Chapter 3.
Mote that when the Initial and final single-particle states are real, then the kernel
function iz symmetric
VAR, R) = Vij(R, &), (43.8)

10 e omit the tono come staes e and ¢,y since here they are spectators with oo dyoamicel mle.
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whether o Is post or prior.
Since the rand ¢ are linear combinations of the channel vectors R and R, we
havea

r=pR +¢R ad ¢ =p'R' + ¢'R, (4.5.9)
whare p = —w, ¢ = ww, P = —tpw, and ¢’ = w, with vy, = M fmg, 1 =
MM, and w = (1 — w4) ™! . The ‘corecore’ vector s R, = ' —r =

@ - )R + (¢ - ¢JR.

To caleulate the matrix element of Bq. (4.5.6), we first convert the bound states
(') and ¢y (r) Into functions of R and R using Bq. (4.5.9). To do this, we must
transform the spherical harmonics ¥(#) and ¥ (8') into linear combinations of the
spherical harmenics ¥o(R) and ¥5,.(RY). This is done by means of the Moshinsky
solid-harmonic expansion [30]:

? = f—n n
(e = vary) S elem PR

n=0Ai=—n
x Y- A ROV (R) (f—n m— A, mAlfm), (4.5.10)
(20 +1)! 1
where clfn) = ((2?1-!— 1)!(2{€—n)+1)!) ' @311

Considering only the case where the reronant part of the Interaction WV, of Eq. (4.5.4)
contains just scalar potentials, we perform the Legendre expansion

Voﬂﬁz T(T Z (T +1)ap5( R, B) Pr(2), (4.5.12)

where the wg(r) are the radial parts of the bound wave functions according to
Eq. (4.2.7). The limit T, ., Iz chosen large encugh to generate all the couplings
for partial waves to be used. Here, the Legendre polynomials Pr(z) are functions
of z, the cosine of the angle betwean R and R'. According to Eq. (4.5.4) with
scalar potentials, the V', depends only on the lengths of the vectors A, and [/, B}
or {7, &'}, all of which mavy be caleulated in terms of {f, B’} and z according to
forrmulae such as r = (p* B'° + ¢*R? + 2pgR A7) Y? in the nurnerical quadrature
for the integral

+1
aam R =g [ v M) @513

1 ri+1
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Using the Legendre expansion, the radial kernel function iz

- K LT KT
Vﬁ":EL{R’:R) = (_1)L+L LL!T%&'-'( 0 a D) ( 0 0 D)

x S WELE L AN WK LE'L, TA) Fi (K, R), (4.5.14)
A

where we use the non-local form factor

Fir (R, R) = ZRR’@R’J‘? (R0 B (¢ B

nnt

x QT+ (—1)MT 37 (7} (F— Y (2K 1) (2K +1)
i o f fenw K #n' n K
XC{E’“)C(E’“)(D DD)( 0 DD)

D S
x (418w K d-m o quy(R,R). (45.15)
' K n

Combining these factors, we are able tocalculate the nen-local kernels V43, . (Y, R)
to caleulate transfer reactions using an exact treatment of the finite range of the po-
tentials and all the recoil terms from the finite masses of the cores ¢ and ¢'.

Zero-range transfers

When the wave functions ge(r) are all s-states (f = 0), when the remnant terms
can be neglected, and when the interaction potential is approximately of zero range,
Vaod(r) ~ Dod(r), then the form factor Vi, ,r( B, ) of equation (4.5.14) can be
simplified to

B RE TS 5 SO N
VEL":DLI:R!!R) = DDI: )"‘ a0 a0

L «.,-f dar

% —ﬂff(R’) —5(pR + gR). (4.5.16)

This can be made local by defining a new step size &' = —phfg = vyhfor A'In
the stripping channel f, and this considerably simplifies the problem of solving the
couplad squations.

Zero-range approximations are primarily useful for transfers to or from s-shell
miclel such as deuterons, tritons and the e-particls.
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Local enerey approximation

H the interaction potential is of small range, though net zere, and the projectile still
contains only s-states, then a first-order correction may be made to the above form
facteor, and the accuracy can be considerably improved. This correction will depend
on the rate of oscillation of the source wave function 4f:( F) within a ‘finite-range
affective radiug’ parametrized as pg. The rate of oscillation is estimated from the
local energy in the entrance and exit channels, which is propeortional to

Ky(R)® = i—“f (8- Uy (4.5.17)

and the result [31] is to multiply the target bound state wg({ &) in Bq. (4.5.16) by a
factor

24
z
L+ pla . (UeelB) + Vol B) — Us(R) + £5) |, (4.5.18)
whare fip iz the reduced mass of the valence particle in the projectile, and Vi B
iz the binding potential for we A).

At sub-Coulemb incident energies [32], the details of the miclear potentials In
Eq. (4.5.18) become invisible, and as the longer-ranged Coulemb potentials cancel

in BEq. (4.5.18), the form factor can be simplified to
2
ﬂff(R’r"J D |:1 -I-JOE_EE—“;EF] = Dﬂgr(R’r), 4.5.19

where
D =(1+kipk)Dy (4.5.20)

is the effective zero-range coupling constant for sub-Coulomb transfers, using the
bound state wave murber &% = Bjigep /R for the projectile.

The parameters Dy and D can be derived from the details of the projectile bound
state @p(r). The zero-range constant Dy Is the integral

Dy = v%fm VAl ug(r)dr, (4.521)
u]

The parameter D, on the other hand, reflects the asymptotic strength of the wave
function up(r) as ¥ — oo, as it iz the magnimde of this tail which 1s important in
sub-Coulomb reactions:
g 1
(T =p—soo ﬁv—f—l“{_’rr

It may be also found, using Schrodinger’s equation, from the integral

De %" (4.5.22)

D= uf’4_«arfm % Vi (r Jug () dr. (4.5.23)
0 2
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From thiz equation we can see that as the range of the potential becomes smaller,
D approaches Dyp. The ‘finite-range effective rading’ pog of equation (4.5.20) 1z
thus some measure of the mean radins of the potential ¥(r).

Asympiatic Nevmalization Cogfficient

The Asymptetic Normalization Ceefficient (ANC) of any projectile or target bound
state wave function, of any partial wave £, Iz defined as the asymptotic coefficient
O of the Whittaker function. That functien is a decaving expeonential for un-
charged particles (ses Box 4.3). The ANT is thus determined by

o(r) =rwm, CoW_y p,1(—2hpr) e Cpe™®", (4.5.24)

{and is therefore related to the above D value of s-wave states by & = z—ﬁﬁgﬂﬁ .

The ANC describes the strength of the exponential tail of a bound state wave
function, and hence captire and transfer reactions at low astrophiysical energles are
directly dependent on its value. Determining this value will be one of the objectives
of miclear spectroscopy, as discussed In Chapter 14

£.5.2 EKnockont reactions

A varlety of different reactions are commonly called *kneckout reactions':

s any removal of a micleon (cluster) from a nucleus, whether by transfer, brealaip,
of more complicated non-elastic reactions leaving one or more residual nucled in
excited states,

® guasi-elastic knockowt such as the brealup reaction 2C{p,pp)!'B with high-
anergy projectiles so the incident and bound protons scatter as i elastically to
~+ B0 relathve angles in a three-body final state, and

s knockout of a cluster which is replaced in the target by the projectile, such as
% (p,e)! !B, to a two-body final state with the muclei in specific energy levels.

This last kind of krockout (transfer) reaction iz considered here, as it is the more
impeortant for low incident proton energies, and is usually exothermic (G = 0.

A (p,oe) reaction can be regarded as a superposition of amplitndes for two differ-
ant mechanisms. Tha first 1z a triton transfar:

(¥C=1B +*H) +p— B + (e =p+ °H), (4.5.25)
and the second is again a transter, this time of a " Be cluster from 12C to the proton:
(UC=1Beta)+p—at (UB=p+ 1B, (4.5.26)

This second mechanism, called keavy-paricle tansfer, produces the final two nu-
clel with the new projectile identical to the initial target, and vice wversa, so its
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amplitude needs to be permuted by an operator F, 115 before combining with the
first amplitnde, as explained in subsection 3.4.2.
The heavy particle stripping interaction terms, from Bq. (4.5.4), are

Trier Vi = Vp_Be + Upa — U
post Vf = V. g+ Upa — B 4.527

of which the most impeortant terms are net the binding petentials Vo_p. or Vape
az usual for normal transfers, but the second term 7, describing the interaction
between the Incldent proton and the knocked out & particle. This Is the potential we
would expect to be dominant if we picture the proton interacting with and knecking
out the o particle from its bound state.

4.5.3 Breakup reactions

When a nuclens In a reaction breaks up into two or more pieces which are both
detected separately, we have brealmp reactions as defined in Chapter 2. Breakup
reactions necessarily invelve the comtimuum final states In somme micleus. We now
consider two-body brealmp.

Crne way of populating continunm states iz to use the single-particle excitation
mechanizm of subsection 4.4.2 to moving a nucleon from a bound state w51 to
a continuum state wpgye(r; &) for some scattering momentum k. This scattering
state now extends to infinity in r, and hence allows the detection of one or beth
pleces moving with relative coordinate r and relative momentum k. Ideally we
will want to calculate the cross sections to all possible final states #'55°; &', s0, to
avold omission or over-counting they should constitute a complets set. For that
reason the renormalized wave functions figg(r; &) of Bg. (4.2.9) are generally
used, up to some maximum &7 value judged snitable for each particular reaction.

Strictly speaking, there should also be couplings, net only from the ground state
to the continuum, but also berweer all contimmm states. The figrgge(r; &) wave
functions are suitable for the first purpose, but, becauss they extend to infinity, not
for the second task of caleulating continuum-to-continium couplings. The Coupled
Discretized Continnum Channels (CTNCC) mathed has been devisad to solve this
problem and allew all physically important couplings to be Included, and will be
discussed in Chapter B.

Transfer mechanisms can also populate the continunm, using the metheds of
subsection 4.5.1 respectively. Convergence Is more difficult in this case, however,
becausze of continuing smmall contributions from very large R values. Ideally, as
mentioned alse in subsaction 8.3.4, the radial integrals should be deformed in the
complex plane by the method of Vincent and Fortune [33] in order to obtain nu-
mmerically stable results.
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4.5.4 Capiure reactions

Two nuclel may approach each cother and fuse together, and the rate of fusion
depends on the potential in the entrance channel as well as the capture mecha-
nisrn. The important factor in the entrance channel iz clearly the penetration of
ary Coulomb or centrifingal barrler present at middle distances. If the scattering
wave comes In from large relative distances, then it will be attenuated by the time
ithastmnneled through any Coulomb or centrifugal barrier, and we will calculate a
peretrablliny factor to describe this reduction.

There are different mechanizms for trapping the particles permanently, once they
have corne inside the Coulomb barrier. One way is for a y-ray tobe emitted, and the
particles lose that energy and fall down into a bound state of relative metion. This
iz a divect-capture process, to be discussed further in Section 47, Ancther direct
mechanizm iz for one of the nuclel to be pushed up to an excited state, absorbing
energy, which malkes escape less likely. This mechanism can produce deorway
r2sonances.

A third way Is for the particles to be captured by some of the long-living reso-
nances of the compound micleus that iz formed of both the nuclel together. This
will happen especially with heavier miclel, where there 15 a high level density of
these resonances: many per MeV. Compound-nucleus resonances are usually nar-
row (that iz, long-lived), so they captire flux from the direct-reaction channels and
teleass it later into other channels in wavys to be discussed further in Chapter 11.
These other channels may be neutron or -y emission, but they are called statistica!
of ewsperatien products, rather than direct reactions. The direct processes are most
likely with light nuclel, where the level density of resonances Iz rather low. We will
sae In subsection 11.5 3 thatthe flux geing tecompound resonances inheavy nuclel
can be simmlated by an absorptive imaginary “fusion part’ to the optical potential,
a patt that is inside the Coulomb barrier.

To caleulate the penetnability factors Pr(£) for traversing a Coulomb barrier,
we need to know the shape of the barrier: how It is composed of a Coulomb re-
pulsicn at medium and large distances, along with a nuclear attraction at short
distances. This ameounts to solving the Schrodinger equation for the relative mo-
tion. Thiz can be done exactly by the methods of Chapter 3, or by parameterizing
the wave functions at an interrnediate boundary and using the R-matrix methods of
Chapter 10. Hill and Wheeler [34] showed how to solve the Schridinger equation
exactly with a potential that has an inverted parabelic barrler. Alternatively, we
could use the WKB methods of Chapter 7 to get approximate penetration factors.

Crce we have the penetrability factors Pr(£7) for each partial wave L, then a
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cross section will depend on them according to

ox(E) = 23 3 (3L+1)PL(E)BL(X), (4.5.28)
L

where Br(X) Is a branching ratio to observing a specific final product X onee the
barrier has been passed. If X Iz fuslon, there are many compound nuclear states
and so Br(X) == 1, as capture iz then with a large probability irreversible.

4.6 Isospin transitions
4.6.1 Charze-exchange reactions

These are reactions in which the participating nuclel keep thelr masses constant,
but change their charge, such as the reaction IZC{p,njlzN_ Warious mechanisms
may contribute to such a transition:

e heavy-particle transfer of M Cfrom ¥ C=C4 nto BN=1C+ p, as discussed
in subsection 4.52,

s two-step transfers via a 11C + d intermediate state, the first transfer adding a
neutron to the projectile and the second step removing a proton, and

» direct conversion of a proton to a neutron, for example by a meson T+ being
emnitted from the proton, and absorbed by the *C where it changes a neutron
there into a proton.

The first two mechanisms can be caleulated by the transfer interactions described
previously, but we need to combine these with the last direct charge-exchange
mechanism, to be described in this subsection. It can be medeled by an isospin
operator which raises the projectile izospin frem ¢, = —1 /2 (p) to +1/2 (n), along-
side lowering the target isospin from T = 0 for **C to —1 for **N. Such an effect
would be caused by a component of the Hamiltonian that couples together the two
Isospins t and T, the izospin operators for the projectile and target respectively.

Lane [35] showed that the optical potential for the scattering of protons and
neutrons on nuclel appears to have a t « T contribution. In heavy miclel, for ex-
ample, the additional attraction between protons and neutrons means that the opti-
cal potential for the scattering of protons on neutron-rich miclel iz more attractive
than for neutron scattering. As discussed in subsection 4.1.1, this is coromonly
paramstrized as

V() =Vo(R) + %ts¥VT(R), (4.6.1)

where £, Is the projectile operator, and the target has proton and neutron num-
bers Z, V. Such a force Implies a corresponding neutron-proton charge-exchange
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Interaction, if we generalize the expression to an invariant form

ViR) =V(R) + % Vo A). (.5.2)

The Vp( f) potential can therefore cause transitions to 1scbaric analogue states of
the target (see Section 3.4.1), as well as producing scalar shifts in the nentron and
proton optical potentials.

Fermi transitions

Such Fermi transitions are the simplest form of izospin coupling, whereby the in-
teraction term iz

Hp=Vp(R)t T, (4.65.3)

for t the izospin operator for the projectile, and I for the target. The operator
t T = .7 +8,0, +£.7%
1

= 5[tJrT_ +t Ty +¢.75, (4.6.4)
where ty = &, ity Iz the raising (+) and lowering (—) operator for the projectile,
and T4 similarly for the target. The three terms in Bq. (4.6.4) have different effects:
the first £, 7" comverts a projectile proton to a nentron and a target neutron to a

protorn, the second does the opposite, and the third makes ne conversions of protons
or neutrons. In general, the effect of the ¥ operators is

T:I: |T: Ts:' = VIT(T-F]'.‘J - Ts I:Tsj:]-) |T: Ts = 1::" (4.6.5)

For arbitrary initial and final state of the target nucleus ¢y and @y, the magnimde
of the charge-exchange transition depends on the matrix element (@ ¢[T'|4;). The
Isospin-ralsing and lowering parts of this matrix element will be uzsed in Chapter 5
In connection with #-decay processes.

Cramaw-Tellery transitions

The Gameow-Teller operators are the next-simplest form of charge exchange. Thess
Iirvolve a spin as well as an Isospin transition:

Her =Ver(R) (s+8) (t - T), (46.6)

where s and § are spin operators for the projectile and target respectively. Thess
operators do neot change the spatial configurations within a nucleus (they keep the
same partial wave £ and preserve the radial wave functions). The Hgp operator
contains a spin-spin coupling, so cannot, for exarmple, couple 0% states together, in
contrast to the Fermi operator Hg.
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The single-particle reduced matrix elements of Heoe for one micleus (projectile
or target) are, for n—p transitions for example:

(ugrsg (7)P || st || vass(r)m)

= (g (7) [ 5 || mawy (7))

1 [xa]
- Efj Ugtaigt () tugag (7]

LS it £ g4
* jj-’(—l)f+s+j +1 {1 _j‘"r i} l::S || s || S::Iafg', 4.6

with {5 || s || s} = +/s(s+1){25+1). The radial integral is a measure of the spatial
similarity betweeen the initial and final states.

The Gamow-Tellar transition is not limited to one or a few isobaric analogue
states like the Fermi transition, but will populate many spin and charge-exchange
states over arange of energles, with varying transition rates. The GT measurements
therefore depend on more details of nuclear strueture, and measurements of GT
transitions can be used to probe that stmctire.

The strength of Ve(R) and Ver(R) can be found by fitting to experiment, or
derived theoretically by folding nuclear wave functions with effective NN forces
Vo The Vp( K) and Vg F) strengths therefore depend directly on the Isovector
and spin-flip-isovector components of Vi respectively.

£.6.2 Generalized multipole fransifions

Mucleon-nucleon interactions Vprpr are known to have In general many spatial-,
spin- and izospin-transition components. When all of these are included for the
transition potential that couples a given pair of initfal and final nuclear states, we
have a generalized set of multipele transitions. Thess can be classified according to
spatial angular-mementum transfer (previously called A, here also called L), spin
transfer there &), and izospin transfer T°. As well, there may be dependence on the
vector sum L + 8 = J. The general form may therefore be written schermatically
as

Hrssr = Vigor(f) [YL(RJ @TS(S,S)]J?&*(t,T), (4.6.8)

where I = 0, and Tg, 7 are tensors of rank 5 and 7" composed of thelr vector
arguments.

There are long descriptive names for each of these combinations: S=1: ‘spin
flip*; T'=0: ‘izpscalar’ and T=1: ‘Isovector’; and I=0: ‘monopele’; L=1: *dipole’;
L=2: ‘quadmipeole’. Thus the LST = 210 transition will be called the ‘isoscalar
spin-flip quadmipele’ reaction.
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4.7 Photo-muclear couplings
4.7.1 Single-phaton reactions

Subsection 3.5.1 derived the equations that couple a single-photon of energy £ =
Foo with a particle of charge ¢ moving to or from a bound state $. From Eqs.
(3.5.33, 3.5.3) these ara:

V- B 20 = VAR,

[T+ V - BIV(R) = Vhjwe)  Z(r). (47.1)

Here, the coordinate r iz the distance from the center-of-mass of the whole system,
and the current operator j(rj gives at each position r the current after Integrating
over all the charged-particle positions r;, which are again thelr distances from that
center-of-mass. For the bound state g at energy £, and continuumm state T at A3,
the photon energy is £, = £ — £ The j, isthe alectric current operator defined
in subsection 3.14, and Z(r) = /& /hc A Is the normalized vector potential of
Eq. (3.5.31) for the electromagnetic field.

The 3-dimensional wave functions of Bq. (4.7.1) have been expanded in partial
wavesinEBq. (3.5.37), from which the partial wave T matrix iz glven by Bg. (3.5.42),
and a vector-form T matrix Iz also given by BEq. (3.5.44). In order to satisfy the
Coulemb gauge condition, subsection 3.5.5 explaing how thiz vector-form T ma-
trix iz replaced by that of Bq. (3.5.60):

T = (VATVETITY Apne(e; (€, M) Vo[ R(B i) (47.2)

which we mnst now evaluate. These matrix elements of the derivative current oper-
ator can be evalnated exactly (see for example [36] or [37]), but the complications
of derivatives mean that simplified alternatives are often used. One miner detail is
that the center-of-mass coordinates r for the position of the photon and r; for the
charged particles are different from R, the relative separation of the two nuclel,
so the couplings are spatially nenlecal. The most commen simplifying approxi-
rmations used are (a) the long wavelength approximation, and (b) using Siegert’s
theorem to transform current into charge-density operators.

The long-wavelength approximation means that the lowest A partial wave in the
allowed range |J—1| <= A < J+1 is taken to be dominant. This is reasonable if
the photon wave lengths 2mhie/f., are much larger than the nuclear bound states:
aven large miclear hale states of ~ 20 fm in extent allow photon energies up to
By ~o 60 MeV before the long-wavelength approximation is unusable.

Slegert's theovem [38, 39] uses the continuity aquation satisfied by the particle
density to allow integration by parts to transformm the current operators Into second
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derratives, where they may be replaced by using the Schrédingsr equation satisfiad
by the particle wave function T{R).

4.7.2 Electric transitions using the Siegert theorem

The Siegert theorem uses the long-wavelength approximation of kr <& 1to replace
the electric plane-wave component by a derivative of the longindinal plane wave.
Since Fyu (0, kr) oo (kr)A+1 ) this limit allows us to neglect the A = J+1 terms of
both Asar(e; &) and A sas(r;long). The two remaining A = J—1 terms are thus
proportional to sach other, as explained on page 122, allowing the replacement

J4+1 JHL1_ 1 .
Agps(r; €] = Apr(rilong) = 4 TEvEFJ(D’ k) VM ()47 3)

F
to a good approximation. If we use the abbreviations
1 [J41
spr = VAT 2T+1177 P % (4.7.4)
R
ter = spr 2y — (4.7.5)
w
Foaa(r) = v FA(0, k) Y (8), (47.6)
the electric T matrix from Bq. (4.7.2) can be calenlated as
&
TS = sk (VIona (6) Vi (R, ) (479)
= tes (VFsa(r) o |Jo(r) | L), (4.7.8)
Remerber that the {|. . . |} notation implies integration over all the variables on the

left: Integration over both pheoton position rand particle positions r; Iz implied.

We now use Integration by parts to move the ¥V from acting on the f; toacton
the current operator. The limits of the Integrand give zero since the bound state
Te( ) — Das B — oo, 50

TEfﬂ:,:!’ =ty (e Fras(r) [V - Jglr)| B). 47.9)

The divergence of the current ¥ j,(r) is then replaced using the contimity equation
(3.1.105), yielding

T = ~tus e (€)2] 2[o(e—r) H — HE S(e—c,)] [2)
= —tw%q (Fone () |[DgHT — (HDp) 0]

— —twg(ﬂi—ﬁf‘g) (@ F s () [T, (4.7.10)
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In the last step we used the Schrodinger equations satisfied by €5 and T, [H —
3Ty = [H — £5]P = 0, and rewritten the integral as a matrix element in the ¢
coordinate. Since by — By = Ay = fw = fke for the photon, and £ isrealfora
bound state, the constant factors become

g ., _ s 1 fIr1_ [nig
—f,!,;JEE-T = —‘\,-'4’?1"\,-’2J+11 .iﬂ_z Tg ;EE-T

Srhc( J+1
= —igy/ ATy 2T +1 rw%. (4.7.11)

The electric photon vector-form T matrix 1s thus

grhe(J+1)
P

T, = —iwar 37

(Tpq1 fraglT) (4712

In the long-wavelength approsimation, weuse Bq. (3.1.17) to give

1 B+l

Fr(0ykr) = ————(kr)"+! thus K= ——— ¥ M (4713

sO k) = ) Fra®) = Gy Y7 G749

The Seigert theorem therefore gives us a matrix element that is proportional to
the standard multipele operator of order J for the charge density of Eq. (4.4.25):

&7 JoM
T ) o (T ¥y 4714
The conjugation of f;pr and the sign of AF in this equation depend on whether the
photon is in the Initial or the final state.

Reconstituting a local form factor for couplad equations

Having mmade the reduction to charge-density form, it 1s sometimes convenient for
the uniform treatmnent of all reaction channels to reconstimte a coupled photon
equation which gives the same partial-wave T, matrix element as Bg. (4.7.12).
For photon partial wave -y as in Bq. (3.5.39),

VAT 4l = ArY T (42) = kAl +2), (4.7.15)
and when TE}EﬁL is the amplitude for the emission of phetons in the +2 direction,
using BEq. (3.3.44) ghres

1 kg [8BwhcJ+1

_ Llkg {8mheJHL) .,
Toew = A Tk g:{l B g [ s ) (4.7.16)
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The gamne T-matrix mumerical value can be obtained from the asymptetic solution
of a reforrmulated photen channel equation

ne /dP J(J41) _
(5T s b
= igg&rrﬁc(ﬂl);(ﬂc) Pptfi () (4.7.17)

The new photon wave functions uf,:l.(rj are net equal tothe previous functions &, (7],
to start with being in partial wave A" = Jratherthan A = J—1, but they have been
constructed to have the same asymptotic T-matrix amplimde.

Since the wave functions T(R) are wtitten as functions of the two-body sep-
aration A and net on the distance r from thelr center-of-mass, Bg. (4.7.17) is a
non-lecal equation. It may be approximated by a local equation If we can use the
power saries of Bq. (4.7.14) to Include the scaling factor inr = wH:

(- 25 o

= %\fsmc(ﬂl),ﬁ(ﬂc);ﬁ&wa(ﬁj : (4.7.18)

This equation, valid in the long-wavelength approximation or when i ~ 1, implies
that the transition potential from particle to gamma channels is

VIP(R) =7t %d&rrﬁc(ﬂrlj,/(ﬂc) Pol F) (4.7.19)

for multipelarity A equal to the bound-state orbital angular mementm.
From the T-matrix element caleulated either by Eq. (4.7.12) or by Bq. (4.7.18),
the capture cross section for photon ernission is (as stated in Chapter 3)

dqr 1 fal

J J z

Ooap = )?ﬁ JE (2Fpt+1) |I,T"°:."“T| . (4720
ok

k(2L +1)(2L+1

4.7.3 Cambining multiple-particle and v channels

The coupled-channels formalism that we have used as a general framework for
rzaction theory is designed to have only hwe bodies In relative moetion in each par-
tition. This means that If a two-body composite system or a contimmm state decays
by -y emnission, the theory describes the relative metion of the emitted photon, and
the remaining micleus has to remain as one body, as effectively bound. Any fir-
ther decays of that residual system will have to be described statistically with the
Haunser-Feshbach methods given In Chapter 11

What the coupled-channels framework can describe well iz the production of a
composite system, A+B — (AB)*, and then the couplings betwean all the decays
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of this system to two-body channels. Such channels inclnde particle channels T+,
CHDY, ete, as well as -y-decay channels w+E, ¥+E, etc., where all the C, D and
E nuclel are effectively bound. The coupled channels set for total spin and parity
Jiog Will have partial waves for each of the particle channels C+D, as well as a set
of -y channals, one or more for @ach residual nucleus B after -y emiszsion. Medium
and heavy nuclel will typically have very many states B to which the composite
system could decay by photon emission, and sach state will contribute channels to
the couplad-channels set.

H the composite (AB)* is a resonance, then the coupled-channels framework as
presented here will correctly generate the branching ratios to all the particle and
-decay channels. In the langnage to be developed In Chapter 10, it will generate
all the partial widihs for both kinds of exit channels. The partial widths to all the
possible residual states B will add together, and combine with the particle partial
widths for the C4+D channels, to form the total width of the resonance that is
observed. In Section 11.2 we will discuss some approximations which may help
to simplify the problem when there are very many -y-emission channels in heavier
miclei.

4.7.4 Connedting photon cross sections and B E.J)
Let us define the electric multipole operator

Mg = o Y M(E) (4.721)

ag that which appears in the earlier matrix element (4.4.25) for Coulomb inelastic
scattering. Then the function defined above In BEq. (4.7.6) becomes in the long-
wavelength approximation

J+1

gfsir) = WMQM- (4.7.22)

From Eq. (4.7.20), the capture cross section 1z

7 164r3 1 J+l |

Tap T TRT (A1) (26 +1) [(2J+1)H]?- R

x Z (Tp |65 Ml[ My

g M S

(4.7.23)
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The Incoming scattering waves +/2/mT; are normalized as delta functions in &,

and ﬁ = ﬁm%, 80

1 d _
- > = (2%+1) 7 BB ¢ — 4).(4.724)
Thiz gives the y—p cross saction

Y imn MM

7 _ 16wt (244+1) T+ k2L dAB(ET i—) (4.7.25)
WPk (2412041 J (274112 d& LT

Using the detalled balance for photo-nuclear reactions as given by Eq. (3.2.4), the
revarse (p+—7) photo-disintegration cross section Iz

S RRLANELY
phata RI(2Jp+1) P
_ (am)f(I+1) 24 +1 2/-198(ELD — 9]
JH2T 1 2 + 1 dE
_ ':ZW)E':J‘l‘l) 2j_1 AB(EJ, 7 — p)
B J[(2J+1)!!]?-k dF ' 4-7.26)

For transitions between discrete states, see Section 5.4.

Transitions for twa-bady muclel

Consider a micleus consisting of two bodies as In subsection 4.4.2, with a charge
Zadtr = —E‘T;R and another 2, atr = %R, where B is the vector separation

between the clusters. If its initial scattering state iz T3(R) and final bound state is
Ty L), then the electric matrix element £.7 is

{@5|M§M|@¢}=fdﬁ.®g@i [Ece(;—?:R)JY}W(—R) + Zoe( =R Y(R)

ol
=7 f Te(RL)* g’ T;(R) dR, (4727
whare the effective multipole chavee 1s
J J
e =zce(—@) +zﬂe(ﬁ) . 4.728)
g g

The spatial integral is

1 JL
f@;R"’@i dR = T%{&M@, TM|L s My Lq0, JO| L3 0 {Tg | B |afs),
4 Ly
4.7.29)
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and the reduced transition prebabilities are

2F41
B(EJi— b) =& +

|(L:0, JO|L;0) (@(R) R e (R))|" . (4.7.30)

More general Racah algebra expressions may be obtained when the core and/or va-
lence particles have spins, and these are spectators to the electric transition. When
the core or valence particles themselves undergo electric transitions, further terms
rmist be added that involve internal matrix elements for one or both of the bodies.

Limiting cases for neutrons
Consider Ly = 0 s-wave bound states of a neutron with a delta-function binding
petential V() = &( R) at the origin. The wave function is Op(R) = /2y R~ exp(—yR) Y (R)
for wave number v = +/3u| B3|/, and the scattering states are p-wave plane
waves. The dipole reduced transition probability for photo-disintegration iz

dB(£1,0+ - 17) _ 28 ( Zae )2 NIk
A1) (E+ Bt

d& e g
Tf instead @y R) = CoR~ exp{—yR)¥T(R) for asymptetic normalization cosf-
ficient (ANC) Gy defined by Bg. (4.5.24), then this result will be scaled by GF /2.

(4.7.31)

Limiting cases for protans

For low-energy capture of charged particles, the dominating featnre is the Coulomb
barrier in the entrance channel. At very low energles, If there are no resonances
then the entrance phase shifts will be zero, and the incoming wave function will be
ezzentially e, (F) = daq, SL(1g, k). According to Box 3.2, inthe s 3 L; and
ki Bo<#7 1 limnits thisz becommes

(rpskeq) & 277, Lol

Fh(m,kiRjﬁL‘i!(gLH_l)! o R R, (4.7.32)

noting that wx&; iz independent of energy. Since now thisz elastic wave function
iz the only non-zero channel in Bq. (4.7.16), we get from Eq. (4.7.20) the cross
section for a specific Jyop, entrance channel L; and multipele J of

4 e | g [Brhc(J+1)
J
T
e~ T A0S fe (seke) 204D (1) |z

q* I Li41
2 B0, ke )| BT |
By & 9 [Ll2L 4+ F He l{ 70, k)| | &}l '

@.7.33)

omitting the angular-momentum coupling factors. At low proton energles £, the
photon energy £ = Ay — B will tend to a constant, so the factor governing the
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low-anargy behavior here is just the e=%™% /£ which Is exactly that built into
the definition of the astrophysical S-factor in Bq. (1.1.4). The same factor thus
describes the energy dependence for all partial waves without resonances.

The integrand of the final matrix elemnent will be dominated by the long-range
behavior of the bound state wave function @el i), which can be characterized by
its asymptotic normalization coefficient & defined according to Bg. (4.5.24). At
low incident energies, therefore, the astrophysical § factor will tend to be constant
with energy, and the constant will be proportional to Gf. For more details, see
raferences [40, 41, 42, 43].

4.7.5 Magnetic transtitons

The coupled equations Eq. (4.7.1) describe the combined electric and magnetic
contributions to the photon cross section. The separated electric part was caleu-
lated from Eq. (4.7.7), and now we look at M.J transitions which give overall par-
ity changes of (—1)7/~7 as explained in Box 3.5. The magnetic part of the M.J
transition integral depends only on the A = J components, and 1s

Th = (VATYITTTY Aty M)V [B(RiK,)),  (47.39)
where, from Bq. (3.5.50), the magnetic plane-wave part iz
Agne(e; M) = (Re) TR0, k) Y508, (4.7.35)
and, from Eq. (3.5.35), the coupling operator 1s

Vip = 24/Bjuw (@sli(r)
_ z@;—i (Dp] {6(c—1:) V — ¥ 6(e—r:)} . (4.7.36)
Mow the vector spherical harmenic in Eq. (4.7.35) may be cbtained alse by acting
on a spherical harmonic with the angular-mementim vector operator,
LYMe) = [F(7+1)]2Y ¥ (8, (4.7.37)
0

Arng(ei M) = [FT+H1)] " 2(kr) " F5(0, k) LYM(E)
= AT+ 3L (k)L FS(0, k) V() (4.7.38)
= [J(J+1)]7 2k Fape(r), (4.7.39)

using the fact that L comroutes with any purely radial function, and then using the
definition of frasr(r) in Bq. (4.7.4).
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The T mmatrix iz therefore

My _ JAT2THL) o
Tod = \ragpag) © Lim(ElVp[P(Rik))  (4.740)
_ F 4r(a7+1) ot
ke Qig Fc?-J(J_|_1
whare I iz the intagral
I:fd" [©f Lisne(r)* V8 +® Ling(r)* VO] (4742

NowL ¥V =rxp V =0,s0 [Lf{r}]- ¥V = — [V f(r)] L for any spatial function
Fir). Thus

I=-— f dr [Bf Vime(c)*  LE + 8 Ving(e)* - LOL,  (4.743)
where from Eq. (3.5.62) we find that
Vins(e) = k*Asa(r;long) (4.7.44)

Y R
P m—ﬂr 100, Fs:frj‘f; 1;([‘) (4.7.45)

in the long-wavelangth approsimation which allows us to neglect the second term
in BEq. (3.5.62). These steps remove all the derivative operators from the matrix
alement of I, giving

—1 m—fdrFAf(D &k [@ A"..F L +‘I"YA.'J L'I'E], (474'5}

where we define A" = J—1. The photon spatial wave functions are now in partial
wave A’ rather than the original A = J. The parity change between T and Ty is
now simply (— 1)‘“, which agress with Bq. (4.7.46) as there are no longer derivative
operators which reverse the parity.

Mote that this transformation of photon partial waves is the opposite of that ac-
complished by the Slegert theorem, which transforms an original A = J-1 to
A" = J in order to remove the derivative operators in the electric matrix element.
In both cases, the electromagnetic parity change iz simply now (—le

The angular parts of the mmatrix elements have reduced matrix elements

! .-'
(Lg|[ Y5 L|| L) = (2Le+1) ﬁv";_ (Let) (Lg0, A O| L0V ( L1 LA L),
T
@.747)

We may now follow the same procedurss as above for electric transitions, and
derive transition potentials for use in coupled particle-photon equations, and also
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define a magretic multipole openaior MT;? to construct a reduced transition prob-
ability dB(MJ, v — p)/db.
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4.2
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Exercises

Calculate the elastic scattering of protons on M2 Cd at 30 MeV using the global
potential of Koning and Delaroche. Compare with the results obtained with Bec-
chetti and Greenlesz.

Work out the potentials for 10 MeW proton scattering on 112 Cd and compare with
those obtained for 30 MWV

The local energy approximation is wery useful to simplify the non-local transfer
kernel. Derive the expreszion for the form factor given in Eq. (4.5.19).

The zero-range approximation was widely used in the ecarly dayz of nuclear re-
actions when analyzing (d,p) data. In thiz approximation, the transition matrix
iz proportional to I, the zerorange constant. Determine D and D azmuming a
deuteron gauzsian potential Vi) = —72.15 expl —(r/1.484)%) in MeV, for radii
infm. Find the «ffective mdius pog.

E1 transitions connecting the ground state with the continuum are very important
incapture reactions. If one tales the asymptotic limit, there is an analytic deriva-
tion for the A B{E1) fdE, the reault of which iz shown in Eq. (4.7.31). Asmime
the bound state is given by Tg(R) = Z7Rtexp{ —yR)¥Y2(R) and the final
zfate iz a plane wave, Dearive Bg. (47,310,

References

C. W Perey and F G Perey, At Data WNucl Data Tables 13 (1974) 293,

T. Belgya, 0. Berzillon, K. Capote, T. Fukahori, G. Zhigang, & Gorizly, M. Herman,
AW Ignatyuk, 3. Kailazs, A Kening, P Oblezhinzky, V. Plujko and P Young.
Handbook for calculations of nuclear reaction data: Refevence Input Parameter
Library, URLmsrarw-nids iaea org/RIPL-2, TAEA  Vienna, 2003

A T Koning and 1. P. Delaroche, Wucl Phys AT13(2003) 231

D. G Madland, “Progres: in the Dewelopment of Global Medium-Energy
Mucleon-Tucleus Optical-MModel Potential™, Froc, OECD/INEA Specializt: Mesting
on Nucleon-Mucleus Optical Model to 200 MMV, Bruyéres-le-Chitel, France (1397)
1289

E D. Becchetti and G W, Greenlees, Pl Rew 182019693 1190

R L Walter and P F. Guss, Red. Effects 95 (1986) 73

R L. Vammer, W J. Thompzon, T. L. Meabes, E. T Ludwig and T. B, Cleggz, Pl
Kep 201 (1991 57.

P A Moldaver, Macl Phys 47 (19630 65,

D, Wilmore and F. E. Hodgzon, Mucl Phys. 55 (19647 673,

C. A Engelbrecht and H. Friedeldey, Anr. Phys 42 (1967 262,

B. Strohmaier, M. Uhl and W, Reiter, ‘Meutron Crozs Section Caleulations for 52CT,
5 n, ¥ Fe, and 5N, INDCINDE)-128, IAEA Vienna (1982).

I 1 H Menet, E E. Gross, I I Malanify and A Fucker, Phys Rev. C 401971
1114,

F G. Perey, Phys Rew 131(1963) 745

D M Paterson, R R. Doerng and A Galonsky, Mucl Phor A263 (1978) 261



Exercires 167

[15] 71 Bojowald, H. Machner, H. Nann, W Oslert, M. Rogge and P Turek, Phys Kew C
AR (1988) 1153,

[16] W. W Dachnik,]. D. Childs, and £ Vrcelj, Phys. Rew & 21 (1980) 2253

[17] I M. Lohr and W. Hacherli, Mucl Phys. A232 (19747 351

[18] C W Perey and F G Perey, At Data Nucl Data Tables 17 (1976) 1.

[19] E D. Becchetti and G. W, Greenles:, Arreal Reperé, 1. H. Williams Labomtory,
University of hMinnezota (1969,

[20] L. Mcfadden and Satchler, G R, Wucl Phys B4 (15968) 177

[2]1] W Astigeanu, P E. Hodgzon and M. Astigeanu, Phys Kew 49119945 2136,

[22] 1 R Huizenga, G. Igo, Wecl Phys 29 (19627 462

[23] 1 -P Jeukenne, A Lejeune, and C. Mahaux, Phys Rew © 16 (19777 80

[24] T Berggren and F. Lind, Phys. Kew © 47 (1993) 768,

[253] A Bobhrand B. K. Mottelzon 1975, Muclear Structure, Wol 1, Reading, A
Benjamin

[26] D. Brink and G. R. Satchler 1993, Angular Momeninm, Oxford: Clarendon

[27] L. H. Thomas, Mafwre 117 (19286 514,

[28] G. K. Satchler, WMuel Phys 11019607 116,

[29] 1 M. Eizenberg and W. Greiner 1987, Nuclear Theory Nuclear models, Vol 1,
Amezterdam: North-Holland

[30] B Mozhinskoy, Wucl Phys 13 (1939) 104

[31] P 1 A Buttle and 1. J. B. Goldfarh, Proc. Phys. Soc. (London) 83 (19641 701; see
alzo §6.14.1 of G R. Zatchler 1983, Direct Wuclear Reactions, Oxford: Clarendon.

[32] L J1.B. Goldfarb and E. Parmry, Mucl Phyr. A116(1968) 209,

[33] C. M Vincent and H. T. Fortune, Phys. Kew © 2 (19707 782,

[34] D. L Hill and 1. A Wheeler, Phye Rev 89 (19537 1102,

[353] A W Lane, Wucl Phor 35 (1962) 676

[36] I M. Lafferty and & R. Cotanch, Wucl Phys A 373 (1982) 363,

[37] W. E. Padeer, ef al, Phys, Rev C 52 (1995) 252

[38] A. I F Siegert, Phys. Rew 52(1937) 787

[39] I M. Eizenberg and W. Greiner 1988, Nuclear Theory: Excitation Mechanisms of
the Wuclews, Vol 2, Amsterdam: MNorth-Holland.

[40] 5. Typel and G. Baur, Nucl Phys ATS9 (2005) 247,

[41] C. Forzzen, M. B. Zhulgina and M. V. Zhukow, Phys, Left BS540 (200279

[42] A M Mukhamedzhanowand F . MNunez, Wecl Phys. A 708 (20025 437,

[43] D. Baye, Phys Kew C© 70 (2004) 015801,



5

Connecting structure with reactions

Winning the (Nobel) prize wasmn’t half az exciting az doing the worle
Maria Mayer

In the previous chapter we presented nonelastic mechanisms based on rotational or
vibrational models, and on transfer, capture and knockout reactions based on the
separation of a nucleus inte a nucleon and a core cluster. In this chapter we see
how the necessary properties of these structure models mmay be related to nuclear
structure theories that should be more exact because they are microscople and
take il the many nucleons of the nuclel into account. It is beyvond the scope of
thiz book on reactions to discuss detalled metheods and numerical examples using
microscople models, so we adopt the aim of establishing a ‘commen language’ be-
tween structure and direct-reaction theories. In particular, we show how masses,
sizes, folding potentials, overlaps and other matrix elements may be defined
in terms of stuetiure models and then used for reaction caleulations.

5.1 Summary of structure mwodels

Amicleus containg a mumber A of nucleons, all pairs ¢f of which interact with each
other by a micleon-nucleon potential V':Z:'(ri — ;) which Iz strongly repulsive at
short distances (ry; = |ri—r;| S 1 fm), attractive at medinm distances (1 fm
% Ty 5 4 fm), while protons repel even at large distances. Thers may also be
three-body forces between bedies é7k according to some form V) r—ry, rs—rg).
In general, V% and V1*) depend also on the spin states of the interacting nucleons,
and should therefore be expanded on a sufficiently complete set of vector and tensor
operators.

The exact sclution for the nuclear wave function will be specified In terms
of the positions p; = r;—5 of each nucleon with respect to the center-of-mass
5= Zf=1 r;/ A of the whole nucleus. Only A—1 of these p, coordinates will

1658
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be linearly dependent as Zil g, = 0, so we write the Internal wave function as
T(pq, ..., pa_1) that iz Independent of 5. In this way we can specify the internal
state of the nucleus in a manner which iz translationally Invariant.

Let @'y, be the sigensolution of the many-body Schrédingsr equation” when the
total nuclens has spin I and z-projection g It Is the solution of a Schrédinger
equation with A7 as the energy eigenvalue,® namely

HaPru(py,. . . pg1) = E101, (5.1.1)

where the Hamiltonian Hy s the sum of kinetic and potential energy parts for the
A micleons. The kinetic energy part iz 1deally written in terms of translationally
irvariant coordinates such as the { p; }, but a simple alternative is to write it as the
total kinetic energy of all the A nucleons mixus the kinetic energy of the metion of
the center-of-mass. In this way, the Hamiltonian H 4 can be given as

A 52 4 4
Hy=- Z Tvi + ﬁvé + Z V() + Z VN e —ry i),
i=1 " =g =gk

(5.1.2)
whare M = >, 7y s the total mass of the muclens. The boundary conditions to be
satizfied are that, for all ¢,

I O5(cs Py ) =0 (5.1.3)
for bound states, when A7 is below all the brealap threshelds. The wave function
can then be normalized, usuallyas

fd.f-h : --fdm_ﬂ‘l’m(ﬂz,---,m_ﬂlz =1 (5.1.4)

for any g When £ Is above some brealnp threshold, then the exact eigenzolution
should be rather a linear combination of ingeing and outgeing acattering boundary
conditions, as described in Chapter 3.

The solving of (Hq — E£7)Tr, = 01z a very diffieult numerical preblem, and
has so far been achieved completely only for A = 2 — 4 by few-body methods,
for 4 = 12 by time-intensive Monte-Carlo techniques [1], and with scattering
boundary conditions only up to A = 5 [2]. To date, the Green's function Monte-
Carle method [1] 1s the only one that uses realistic NIV forces directly in the many-
body Schrédinger equation (5.1.1) with 4 = 5.

More commenly, various approximmations are made to simplify the problem. For
applications, we thus desire approximations which still reproduce as accurately as

! tn this chapter, we will ime & for the wave function of a whole noclews, and ¢ for the individual single-particle
vave fimchons.

2 The epergy cigemvalue does ot depend on g if the Hamiltonisn iz purely intemal and hence rotationally
myariant.
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possible the features of T, Influencing low-energy reactions. The approximation
metheds all reduce the allowed complexity of the wave function, and derive effec-
tive interactions to reformulate the Hamiltonian.

We can see this formally as dividing the Hilbert space for the wave functions
into two parts by means of projection operators P for the simplified range, and
& = 1 — P for the remaining part. Feshbach [3] shows the effective Hamiltonian
for the P patt

Heg(PPrp) = E1(PPr,) (5.1.5)
with
Hg=FPHF + PHQE%WQHP. (5.1.6)

The Green's operator (£ — QH©Q) ™! should have specified scattering boundary
conditions for amy open channels. The Lee-Suzuki method [4] iz another methed
of deriving a simplified Hamiltonian for the reduced model space.

The Mo-core Shell Model (NTEM) [5] and the Y,y [9] methods apply thess
reductions in a systematic way. The more traditional practics has been to define a
reduced model space for F &y, and then use experimental results to fit the set of
parameters in the effective Hamiltonian Hpp.

We actually use this method — of finding an effective interaction appropriate for
a reduced model space — to find the interactions needed for low energy nuclear re-
actions. A wide range of model spaces will be used, such as shell models, cluster
models, mean-field models, and collective models for the wheole miclens, in order
of decreasing scope of the model space. In this sequence, therefore, progressively
fewer micleon-nucleon correlations are described, and the models become corre-
spondingly simpler. Which model we should use will depend on which features
determine the nuclear reactions of interest.

We now briefly describe the model spaces and features of this range of nuclear
modals.

5.1.1 Shetl models
Shell-model wave functions are expanded using harmenic oscillator wave functions
ag the single-particle basis states, for some oscillator energy fw. A single Siater

determinant for A ldentical nucleons is the antisymmetrized product of A single-
particle wave functions :

4
@s(ry,. .., ) = A [ | drtig(ri, 5) (5.1.7)

i=1
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Table 5.1. The range of shell-model calculations performed for nucleans (n shells
with vange of quanta from N 10 N+ AN

A shell AN moedelsfor

] 0z only 0 simplifisd *He and *He

1 D 0 51i to 1*M: Cohen and Kurath [7]

2 ad 0 Y70 to ¥¥Ca: Wildenthal [8]

1,2 mixedp & sd 1 c.g 'Ber Brown [9]

3 pf 0 4L 2 and abowe: Caurer [10]

0,1 =p & MNo-Core Shell Model [5] up to 150

for a given set & = {m:di5:, ¢ = 1. . A} of single-particle quantum numbers. The
A Iz the antisymmetrization operator. Some shell models couple all the states to
good total angular momentm T, whereas others use an m-state basis and only
discrimninate between differant I after diagonalization.

The single-nuclecn states ¢y, 7;) for spatial coordinate r; and Pauli spin pro-
jections oy, labeled by quantum numbers s249, are

Prei (6, 0) = Ree(r) fr [¥5 (E) ® X7 Jim (5.1.8)

where 5 = 1/2 Is the fixed nucleonic spin, 2 = 0,1, ... is the number of radial
nedes (excluding the origin), and m: 1s the angular-momentum projection on the 2
axiz. The harmonic-pacillator radial forms ara

_ | 2ol'(n4+1) : —alnify I+1pi4d, 2.2
Foulr) = [I‘(n+£+%)] () B o) e
for & = +/wm /A, where
b _ N D+ 1+ 3)(—ofr?)
A Zr(n E+ LT+ & + 1)&! ©-L10)

are agsoclated Laguerre polynomials. The energies of these basls states are shown
in Fig. 5.1 in the leftmost column. The second column shows the splittings ex-
pectad in a finite well, and the third shows the effect of spin-orbit forces. If there
were no firther interactions, then these levels will fill up in sequences according to
Tioeel 7 ), and the gaps between various levels give rize to the closed-shell (magic)
murnbers when a shell is completely full

In a specific shell-medel calculation (including interactions), the many-body
wave function Tiri1, ..., ra) Is necessarily expanded for a specific set of allowed
71373 states for some value of fw chosen according to the expected radial size of
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Harmoaonic Finita Withspinorht foma  »_ (0 Sum Clozad
Cracillator Wall shalls
BE=thtL
""""""'_Uiu.lﬂ— (14 1258 — 125
5 _a (2] 112
£ T ATy 110
Sk 2] 105
(81 100
(1 92
12 B — B2
(2] 0
4k (4)@ 8%
=
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(1 S0 — 50
(2] 40
Shes () EL
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Moo . ri, 2j+1 32+l

Fig 5.1. Zingle-particle levels are the basiz states for the shell model

the final nucleus. The calculations may be classified by the number & = 27; + &;
of oscillator quanta for each mucleon. According to A we show, In Table 5.1 the
historical sequence of shell models that have been solved. The size of the matri-
ces neading to be diagonalized in the shell model rises very rapidly with A and
the number of micleons, limiting the range of applicable nuclel according to the
corputers available. Shell-meodel caleulations are also classified as OFw or 1hw
according to the excitations AN allowed above the initial A

The calculations in Table 5.1 also differ in how the angnlar momenta {1;,s;} are
coupled together Traditional metheds [7, 8] used sequences of frurctional porent-
age expansions to define states Oy, of good angular mementurn I, but more recent
caleulations [, 10, 5] use the mi-state scheme, whereln the expectation values of T
are only caleulated for each eigenstate after diagonalization.

The marmy-body wave function for the whele nucleus is constructed as a super-
position of many mch Slater determninants for different quantim mimber sets 5.
For a given set of ¢y, basls states, limited as above by a specific A value, the
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shell-model wave function iz
Spnax A
oMen, . ara) = 3 as A [ | dnasg(te o) (5.1.11)
S=1 i=1

using aroplindes as for each set S of single-particle states, where Sy Iz the
total nurober of such sets in the model. The a5 amplides are finally found as the
elgenvector components of the effective Hamiltonian Hog in this basis, as

[Hatt — Es] 25 (b1, 0y 0) = 0, (5.1.12)

Because of the restricted range of M, the effective potentials that must be
used In Hog cannet include all the short-range repulsive part of the NI interaction.
Either effective V(%) and V) are calenlated explicitly, as in the NCSM [5], or the
values of {ab|VrEii' |eef) moatrix elements of the form

(Pratasa (F)Prstss () | ViR (=) | Brote o (F) Brgegsa (F)) (5.1.13)

are fitted so that the A-body eigenenergies approach those seen in nature.

States of a specific Mk caleulation all have the same parity: if there are 7 nu-
cleons in a shell A, the overall parity of the nucleons in that shell will be (—1)”’”.
In nature these states are mixed with others of opposite parity, which may come
about in the model either by including kole states from the deeply bound filled
shellz, or by Including fmtruder states from less bound higher shells. The mixed
p,st-shell models of [9] atternpt to include intruder states In a systematic way by
mixing N = 1 and 2 basis states.

The wave function of Eq. (5.1.11) for a state of A nucleons iz a function of all
coordinates {r;, ¢ = 1...A4}, and therefore includes some center-of-mass motion
of the whole miclens. In the shell meodel, if 2 complete set of harmenic oscillator
basis states is included up to some shell closure at & + AN, it can be arranged that
the center-of-rnass motion iz in its ground state T$%, (8] for the whele nucleus,
and therefore factorized from the wave function. The true A-body wave function
appearing in Bq. (5.1.4) 15 therefore

a0
Pra(p1y s Pa-1) = Py (1, ,va)/PE50(8) (3.1.14)

where Fry, Iz a projection operator that selects total spin state T In this wav,
translationally invariant properties may be extracted.

Crne significant feature of harmonic-oscillator basis states Fpe(r) Is that they
all decay at large distances as exp{—a®r?/2), and so fail to accurately describe
weakly bound states, which have exp{—-r) behavior.®

The original harmonic osclllator basis states necessarily fail with unbound states,

& A maditional “fix’ has been to 1me spectmecopic amplimdes from disgonalizations to mulbply wave fmcticns
calculated in finite Woods-Saxon wells. These wave functiome in finite wells canpot be 1=ed in the main shell-
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a5 these should cscillate to infinity. To meet this problem, there has been recent
research on continiurn shell medels (for example [12, 13, 14, 15]) to describe
these unbound states by elther adding in, or matching to, explicit scattering wave
functions with the correct asymptotic forms for positive (contimmm) energies.

5.1.2 Cluster models

These models divide the nucleus Into twe or more groups, 2ach group containing

either one nucleon or a bound cluster of nucleons. The effective Interactions be-

rween the clusters Is used to find the dynamical behavier. The reduced dimensions

of the model space allow beth bound and scattering states to be calenlatad.
BExarmnples of cluster models are

e particle-core models: TO=1"04 ;" B="Be+p

o deuteron-rove models: "Li= o+ d

» triton-cove models: TLi=o 4+t

o alpha-cluster models: Be = 205 150 = 30; PNe= 0 4 o
e three-cluster models: "He=o +n4+ n;*B=a+*He+p

Cluster models simplify the many-body problem by assuming that each cluster Is
either frozen in its ground state, or iz allowed tobe in one of a small set of low-lying
excited states.

The effective interactions used in cluster models are of two kinds. They may
be (A) real optical potentials, with maybe spin-orbit or tensor components, or (B)
ctherwise derived from an NI effective force using fixed antisymmetrized wave
functions for each cluster. Method (A) Iz less microscopie, but allows each cluster-
cluster potential to be fine-tuned to known bound states andfor resonances. Method
(B 1z called the resemating group method (RGM) that uses traditionally a Gaussian
central and spin-orbit MM interaction, with one adjustable parameter in its spin-
dependence to fit some essential thresheold energy [14].

Two-cluster models are easy to solve, using elementary bound or scattering tech-
niques, as in Chapter 3. Three-cluster models, by contrast, lead to partial differen-
tial equations In the two Jacobi coondinates: two translationally invariant relative
coordinate vectors. The partial differential equations may be comvertad into cou-
pled cne-dimensional kyperspherical equations using the methods of Chapter 9.
Such models, for exarople for e = o + n + 1, describe the ‘valence’ n-n corre-
lations with good accuracy, but not those of the neutrons inside the core. That s,

model calonlation for the ¢ ;(r.o). a= then the factorization of center-of-mass motion a= in Fq. (3.1.14)
would not work

A mome systematic approach i o uss the *raefomed harmomic oecillator' (THO) basis [11], which mde-
fines the meaming of the mdite coordinate as o model some exponential tail more accimately.
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the cluster-cluster correlations are now modelad precizaly, at the expense ofhaving
frced structures within the clusters.

5.1.3 Mean-field models

Medinm and heavy miclel are beyond the scope of shell-model computations, and
have no simple cluster decomposition. For these, mean-field meodels are most com-
monly usad [17]. These are now often called density-functional methods, because
of the central role of the density p(r).

In a mean-field model, the micleons are taken as affected only by the mean or
average potential attraction of all the other micleons. If this mean field Via(r) is
defined in a body-fixed coordinate system, the single-particle eigenstates d;(r) are
found by solving

[Tr + Vin(£)]gu(r) = esiilr), (5.1.15)

and then the lavels £1 < £ = ... = £p are filled in order of increasing energy
by 7ioec (2] of the A nucleons while respecting the Pauli exclusion principle. This
means that the number of nucleons in an orbital, the occupation number r2o.0(€), 1=
less than 27341 for neutrons and protons separately. The energy & of the highest
occupled state iz called the Fewmn! energy. The total nucleon density of the nucleus
iz thus

I
pE) = 3 mocsl) [e(e) (5.1.16)

where Z:;l Tiooelt) = A. This density is a function of the vector ¢ in the body-
fixed coordinate frame, allowing a nuclens with intrinsic deformation to be de-
scribed. The mean field Iz then calenlated from the density o(r) by felding with
some effective NIV interaction Vyn(r) by

Vi (r) = fdr'ﬁam(r—r'j,o(r'j. (5.1.17)

H thiz iz different from the starting mean field in Bq. (5.1.15), then the calcula-
tion of g(r) and Via(r) from each other must be repeated until they are consistent
with sach other: the eigenstates in the potential produce that same potential when
the density iz folded with the effective Interaction. The medel is then called seif
COMSISIEnt.

In Hartree caleulations, the overall nuclear wave function iz a product of all the
occupied orbitals, whereas in Hawtree-Fock caleculations the exchange terms are
incInded, as caleulated from a Slater determinant. The total wave function of the
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mucleus isin that case an antisymmetrized product of the single-particle states ¢y,

A
O (es, ) = AT ] s, (5 5p) (5.1.18)
p=1

where 1 = ¢; = [ Iz the orbital of BEq. (5.1.15) cccupied by particle p. We note
that in mean-field theories we do net have a clean factorization of the center-of-
mass motion according to Bq. (5.1.14), but these models are more commenly used
for heavier nuclel where there 15 less center-of-mass motion. Angular-omentum
projection operators Fr,, can still be used to select composite states of good angular
moooentim.

Mean-field meodels may be improved with using a density-dependent effective
Interaction Vum(r; 2). propertional for example to some power of the density o
The existence of these non-linearities mmakes it difficult to write down the specific
Hamiltonian for the system, which is one reason why all these models are now
more accurately classified as density-functional theories®

Mean-field models are simpler for even-even miclel, as then nucleons are in pairs
of time-reversed orbits. In general, the Vi (r; 2) may be finite range forces such as
Gogny [18] or Volkov [19], or even simpler zero-rangs Skyrmme-class forces [21].
In all cases, the parameters defining the force are fittad to give binding energles and
charge radii of a small set of benchmark miclei, and then used to extrapolate to a
mmch wider range of nuclei approaching the driplines. One micleon and pair sepa-
ration energies may be predicted, as well as all the proton and neutron density dis-
tributions. Mean-field models may be used to predict bound-state wave functions
for transfer or capture scattering caleulations according to the orbital cccupation
mimbers.

To calculate the exeited states of nuclel In the mean-field approach, we can el-
ther use a time-dependent analysis of how the nucleus responds to perturbations,
of use a linearized perturbation theory. There s the time-dependent Hartree-Fock
(TDHE) method [20], or the linear parturbation analysis called the rardom-phase
approximation (RPA). The RPA generates excited states of the mucleus as a su-
perposition of ‘particle-hole doorway states’ that can be reached from the ground
state by one application of particle-hole operators. The doorway states can them-
selves be coupled to two-particle—two-hele states, and thiz will further fragment
each deorway state inte many more levels by a spreading process. These 2pZh
states should ideally also be Included in structure calenlations, In a ‘second RPA
framework The set of all compound-nucleus states iz more numerous again, and
in principle containg all excitations, including 3p3h and 4p4h operations, ste.

4 9% may firther indude paving effects either by BCS supsrconductvity models, or by a Bogolyubow peir

g field. With weakly bound levels =;, restment of pairing requires a camful incheion of positve-epsrgy
Conimmm states in order to get the nesded complete et of paired staes that ar properly coofiped.
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5.1.4 Collective nrclear-matier descripiions

The very simplest nuclear description is according to the density distribution e(r).
This may be derived from one of the structure medels above, or we could attermpt
to Immediately write down a plausible form for that funetion. This form describes
the collective size and shape of a micleus: spherical or deformed. The density,
however derived, can now be used with a nucleon-nucleen potential to find the
principal interaction potential of the nucleus with another.

We have acheice describing the densities o(r) in the laboratory frame of refer-
ance (1, &, ), or p(r’) in a body-fixed frame (r, &, ¢} (where that frame can be
defined). The radil in the two frames are equal. Laboratory densities will depend
on the angular momentum state Ju of the nuclens, whereas body-fixed densities
are {mstrinsic, and depend only on the quantum number X, which iz the projection
of the Instrinsic spin on the body-fixed 2 axiz. Mean-field, density-functional and
collective rotational models give the nuclear wave function initially in the body-
fixed frame, whereas shell-model wave functions are usually projected onte good
angular-roomentumn states In the laboratory frame.

In terms of a wave function that depends on A coordinates, such as that of Eqs.
(5.1.11) or (5.1.18), in either cocrdinate frame the single-particle density 1s the sum
of the probability distribution of each nucleon:

A = gf...f|'iI¢'(r1,...,rﬂj|2§(r—r¢) dry ... drg
A

= (O(ry, ., va)| Y 8(e—r) [O(ry, .y eal), (5.1.19)
i=1
H the wave function carries quantum mimbers Fi or K, so will the density. When
these wave functions are antisymmetric, we need only loock at the dependence on
one of the coordinates, ry say, and multiply by A:

olr) = A(®(Es, .., Ea) 6(E—r1) [O(E1, . yEa)). (5.120)

The density of BEq. (5.1.19) may include the effects of center-of-mass metion,
and have therefore an inflated mean rading because the division of Eq. (5.1.14) has
not been performed. For more accuracy, we should thus use the wave functions
T(py, ..., pq_1) of Bg. (5.1.1), because these are translationally invariant, and
we have py + Zf;ll g; = 0. The single-particle density that is translationally
Imvariant is therefore

A-1 A-1
olr) = (T(py, .. | Z o(r—p;) + (K4 Z o) | [Blp, .. ) (5.121)
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However derived, the density distribution o) for A micleons is normalized by

fdrp(rj = A, (5.1.22)

The p(r) will be spherically symmetric in the laboratory frame when I = 0, or
when the nucleus Is an unpelarized sum over all projection quantm mimbers . In
the spherical case, the density enly depends on v = |r|, and iz normalized as

4«arf ridrpir) = A (5.1.23)
u}

Is root mean square radiug rogg, measured from the center-of-mass of the whele
miclens, is defined by

T _opery L z U
rioe = rtl = Afdrfr Al = A.L radrplr]. (5.1.24)

Mow each nucleon hag itself an Intrinsic density gy, (r) corresponding to aradius
of about 0.8 fmn. Thiz implies that the density of micleonic matter pre;(r) iz the
comvelution of this finite size with the peint-density distribution:

Pmas(E) = f dr’gins (£ — £} o). (5.1.25)

The rms radine of pp i larger according to v2,, = & + ri.
miclear physics, to aveld ambignity, densities are communicated using the peint
muclear density p(r).

Separate densities p,(r) and p,(r) may be defined for protons and neutrons,
respectively, to allow for distinet charge and matter radii. At radil where go(r) &
Aolr), we would have what 1s called a neutron skin.

We now describe some density distributions of simple shapes:

Usnally in

Sphere of wniform densiny
A sphere of uniform density g and radius R satisfies $7R%m = A so

34

= 5.1.24
ArRE ¢ )

S

and has rms rading Fege = \'/%R

Spherical spheve of Fermi (Woods-Saxan | distribution
A spherically symmetric sphere with density

plr) = pn [1 T e¥]_1 (5.1.27)
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st be normalized to A nucleons by

e [+ (B o) e ] e

and has rms radins

) 7 1,-"2
P [E (R?- + szaz)] : (5.1.28)

Spherical sphere of Gaussian distribution
A spherically symmetric sphere with density

plr) = g e (/R (5.1.30)

st be normalized to A nucleons by

A
= arilE e

Trnm = \'/%R. (5.1.32)

Deformed sphevoldal density

(5.1.31)

and has rms radins

In the body-fixed coordinate systemn attached to the nuclear shape, a deformed
sphercidal density o(r') will depend on the pelar angles 6/, ¢ just as the potential
did on page 140. A simple form of this dependence may vary as before with some
‘surface rading’ R(&, ¢f) according to

o, 6,¢) = po(r—R(8',¢f) + o), (5.1.33)

for some angle-independent density profile function go( A) that could be one of the
shapes given above. For a sphere of uniform density, oo f) would be a step fune-
tion that iz unity for A < Fp and zero for A > Hp, and for the Fermi or Guassian
distributions it would be the functions given in equations (5.1.27) or (5.1.30). Now,
we allow these Ferrni or Gaussian distributions to become deformed. The R(#, ¢f)
iz defined so it Is the half-density radins in the case of the sharp-cuteff or the Fermi
distribution.
We can always expand the angular dependence of R(#, ¢) in spherical harmon-

ics

) Ao+

RV =Fo+ Y > 5, Y06, ¢), (5.1.34)

A= p=—2

where Appey I sufficlently large for the desired accuracy. Here, the 4y, are called
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matter deformation lengths, and 8, = 8y, /Fy are the fractional matter deforma-
tions. Thisequation is simnilarto Eq. (4.4.8), but there we were talking of petenticl
deformations, while here of matter deformations.

Multipole moments

The multipole morments of a deformed distribution are defined using operators sim-
ilar to the electric mmltipele operators of BEq. (4.7.21):

Qe = > ¥ () (5.1.35)
k

where the Index & runs over all nucleons for the matter distribution. The elactric
rmlfipele moment would be obtained i the sum was over all protons, and if a factor
e iz included for the proton charge.®

In the laboratory frame, the quadrupole moment of 2 nuclens in a quantum me-
chanical state Py, 1s defined as the matrix element of Qg evalnated Inthe =T
magnetic substata:

Q =/ (T |Qu [T 11), (5.1.36)

where the /16w /5 factor is conventional. Since, by the Wigner-Bckhart theorem,
(Dr7|Qeo|Trry = I3, 2010 (@7 || Qg || @7}, we have a formula for the
quadmipele moment,

Q =/ BTN, 20102y || Q2 || ©rY, (5.1.37)

in terms of reduced matrix elements as defined in Bq. (4.4.25): the only difference
Isthe unitcharge factor e inthe charge density p(rp) appearing in Eq. (4.4.25). This
moment for a specific quantum state of spin Iis called a spectroscopic guadrupole
moment.

In the body-fixed frame there Is no need for the Wigner-Eckhart theorem, as
the moments may be calculated directly by quadrature of the density ofr, #,4 1 In
Eq. (5.1.33). For an axially symmetric quadmpele-deformed density ¢ = 2 and
o= 0, sothe intrinsic quadrupole moment Is

Q =4/ 2T f dr’ + % o677 (). (5.1.38)
A first-order expansion of BEq. (5.1.33) for stnall &; gives

- 3E, A
4 T
¥ “Ery often electtic moments aw given mumerically without this factor, sz forexample 3e fm®. This does not

mean the moment has ik of e fm?, but rarher that 3e, if e = 1.2 MMeWV1/2fml/ 2 iz subetimbed, has unis of
fm?®.

By (5.1.30)
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The A can be replaced by Z to give the moment for a charge instead of matter
density of peint nucleons.

H a nucleus conslsts of a spherical core plus an unpaired single nucleeon in a
state gasy(r) of angular momentum # 4+ s = j, then its single-particle quadrupole
momment will be from the single nucleon. By Eq. (5.1.36), thiz 1s

2 —1
7+1)

Gep = ':""2:': (5.1.40

where the mean square rading inthe state is (r¥) = [ r%|dg,(r)|*dr. Note that G

iz zero for § = % a5 it is a rank-2 tensor operator, and that it 1s negative (oblate)

for all other § valuas.

5.2 Folded potentials

Having defined density distributions that are spherical or deformed in some refer-
ance frame, we now wish to caleulate the corresponding interaction potentials with
a scattering mucleon or another acattering nucleus. We mavy do this if we know the
Interaction betwesn sach nucleon in the density distribution and the cther scatter-
Ing body, and resulting potential is given by a convelution integral This integral
iz alzo called a folding [mtegral, so the potentials cbtalned are called folded poten-
tigls. I the other scattering body is stictureless, we have a single-folded potential,
and if we have also to integrate over the cther body's constiient nucleons, then we
have a double-folded potential.

Consider first a target nucleus with density ou(ry) of A, nucleons interacting
with a stictureless projectile p at position r by means of a potential Vopr(r — ry)
between p and each micleon N of the target. A simple estimate of the overall
potantial betweeen the projectile and the target is the convelution integral

Uit} = f dey Vo (£ — ) ma(re). (32.1)

This is the single-folded potential, since there Iz just one integration coordinate ry
as in Fig 572.

If the projectile itself consists of many nucleons, with distribution g.(r,), each
of which Interacts with a target nucleon by a nucleon-nucleon potential Vam(rp —
r:), then we need to caleulate what is called the dowble-folded potential. The
coordinates are illustrated in Fig. 5.3, in terms of which the integral is

Um(r) = f d[‘tf drp m(re)op(te) Vn(r + rp — r3). (52.2)
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Fig. 5.2. Coordinates for single-folding integrals.

rtr,-r,

Fig 53 Coordinates for doublefoldingintegrals.

5.2.1 Fourier methods

These density-independent folded potentials are most comvenlently caleulated us-
ing Fourier transforms, so that the above convelution integrals become products
of Fourler densities. Following Satchler [22, App. C), we normalize cur Fourler
transforms by defining

filk) = f dr ¢*7 f(r) (52.3)
so that the imverse transform is
1 —ikr ¢
£e) = e f dk &7 f(k), (52.4)

keeping [ dr et = (2r)%6(k)."
Conslder the projectile and target densities with respective Fourler expansions

foles) = @) [ dicy 707 (k)
() =(2*rr)‘3fdk¢ e TR 5y (k) (52.5)

and the NIV force with transform given by Vim(s) = (2r) =% [ dk o=k =i (k).

& Iote that other definitions may have {213/ 2 factors placed differently in these equatinns.
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The Fourier transform of the folded potential iz therefore
Upelk) = Pp(K) 2u(K) Vim(K), (52.6)
from which we extract the needed spatial dependence of Eq. (5.2.2) as
1 L
Upl(t) = o= { dk e75° Up(k). 52.7
€)= G [ RO T 527

Effective interactions Ty(r) that are derived as a spatial potential function are
often written as sums of analytic Yukawa, Gausslan and zero-range forms. Thess
have analytic Fourler transforms for Vni(k):

Vim(r)  Vim(k)
g BT 414 1

W
- o kE 4 p®
W:Ie—{f'l,f'b}z 1{'011—3,"2@39—52'!#2,."'4
Vad(r) 5

5.2.2 Deformed densities

H we follow for the density the same expansions as used on p. 134 for potentials,
we define density mnltipoles o, (r ) by

PE) =3 o) VAT YL(E), (52.8)

A

and similarly for the Fourder transform

Alk) = 3 Baplk)var v (k). (52.9)
A

These spatial and spectral mmltipeles are related using BEqgs. (5.2.3) and (3.1.24),
giving

(k) =4m"‘f %FA(D, k7 ipau(ridr, (5.2.10)
u]
so, for example,
Fon(0) =fdr,o(rj =4ﬂ'f 72 ool )dr = A (5.2.11)
u]

Cine useful limit iz for A=0, Fo(0, kr) = sin{kr), and for small &, A0, kr) =
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kr— k%% /650

Foalk) = 44r-£mfr2 (1 - "“:‘;‘2) oo () dr
- A( - '%2{1"2}) . (5.2.12)

Here, the decrease of density in momentumn space 1s proportional to the mean
square radins.

If just one of p; and g, is deformed with multipole A, then U, (r) will also carry
an order-A angnlar dependence. Supposing that the target 1s the deformed nucleus,
we have

- Y -
DA(k) = Ball) 5% (k) Vama(k), (5.2.13)
fromn which the radial multipeles of the deformed potential are
A 1o k& i
U () = 5zt [ PO T (k). (5.2.14)

These expressions for the multipoles of the potential between two nuclel can be
used more generally than the rotational models of subsection 4.4.1. Those models
agsumned that the interaction peotentials depended on the distance from the “surface’
of a nuclens that depended on angle, whereas now we have the means to caleulate
the potential for any angle-dependent density distribution, by folding that distribu-
tion with the interaction betwean the constiment micleons and the other scattering
body.

5.2.3 Typical forms of effective interactians

The folding methods of this section use effective interactions Vyg(r). It iz be-
vond the scope of this book to discuss all the effective interactions that have been
proposed and tested in the literatire, so we mention two of the moest widely used.

Cre commonly used Vyp(r) effective interaction for folding is the M3Y inter-
action, deterrnined by Bertsch et al. [23] as a simple parametrization derived from
realistic forces. This real interaction consists of a sum of two Yukawa terms, as
well a5 a zero-range delta function term to simmlate exchange effects. The Isospin-
average form of the M3Y potential is

E—d.-‘i" E—Z.E-f'
17 r) = 7938 — 2135
ey o 3

— 252 5(r), (5.2.15)

in units of MeW. This gives only the real part of a nuclens-miclens potential, so the

Imaginary part of the nucleus-nuclens potential that is needed when there are open
channels would have to be found or fitted independently.
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For muicleon-nucleus scattering, another effective interaction widely used is the
ILM potential of Jeukenne, Lejeunse and Mahaux [24], as mentioned in subsection
4.1.3. Thiz contains beth real and imaginary compeonants with parameters that are
energy and density dependent.

5.3 Ovwerlap functions

In order to caleulate transfers, captures, or single-particle excitations invelving a
micleus B, we need to know what will be the quantum states of a nucleon that
could be remeoved from B, as well as the corresponding states of the core A that
remains. This information is given by knowladge of the one-body overlap functions
= (D a|Pg) of the many-body wave functions of T4 and T5.

5.3.1 Non-antisymmetrized theory

When discussing transfer reactions on p. 145, we considered a simple case by
Ignoring the core structure and its spin, and by assuming that the composite nucleus
was uniquely composed by a single bound state. In general, however, nuclel are
mmore complicated, the bound nucleon may be identical to others inthe core, and the
removal of a mucleon may leave the core In distinet states with different probability
amplitndes.

We take into account the identity of nucleons in the next section. For now we
ignore the Paull principle, and consider the transfer of a ‘valence’ particle v to a
core A to form a composite miclens B=A+u. We define the core In spin state Ty
to have wave function @?A (£4), and the composite nucleus in spin state I to have
@ﬂl(fgj, where £4 refers to the internal A coordinates and £g = {£4,r} is the
composite set of core+particle coordinates.

We mmay then need to caleulate and use the everiap functions

Brera(r) = (OF,(£4)|OF, (£a,1)), (5.3.1)

of which there will be manv, ona for each {I4, Ig} pair. The parity of @7, .r5(r) is
MG 4Ty, Where T, Iz the nternal parity of the valence particle v. The integration In
thiz equation iz over the core coordinates £,4. The magnitude of ¢ ;(r) measures
the amplitude for removing a mucleon at ¢ from composite state Iy and leaving
the core In state T4, Bach composite state Ip may In turn be reconstructed as a
superposition over all the mutmally erthogonal core states:

TE(Ea,0) = Y Prora(B)DF(E4). (53.2)

Ta

The individual overlaps ¢, .ro(r) are pet normalized to unity, as only thelr summed
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normmalization, for each I'g value separately, satisfies
3 f drlpr,ry(F)F = 1. (533
Ta

This follews from Bq. (5.3.2) and the unit normalizations of all the @?A and ':If'?g
of BEq. (5.1.4). Remernber that we are so far ignoring the possibility of identical
particles.

For practical calenlations of transfer reactions, efc., we need to expand overlap
functions in partial waves. Let the transferred particle v have spin s, and we keep
the core and composite angular momenta as Iy and Ig respectively. After choos-
Ing a particular coupling order such as |(£3)7, La;I5), the overlap Bq. (5.32) is
equivalently written as a composition for nuclens B in terms of A and a valence
particle™:

o, (Ear) = 3 B0 r |[3lE) © x.], © 9F (@1)] (5.3.4)

Ta.085

for some single-particle radial overlap wave functions ﬂfs“‘rg (r).%¥ By the com-
position of parities, we require (—1)%mgm, = wg. In this theory, which is not
antisymmetrized, the radial wave functions are normalized to unity for each Iz,

according to
Zf drful 2 (r)]F = 1. (5.3.5)
fasil g

For nucleons, only the value 5 = % antars Into these summations.

Spectrascaple factors

This neon-unit normalization of the [adividuci ﬂfr“‘ Iz (r) allows us to write them
non-trivially as a product of normalized wave function and an amplitude, called
the spectroscaplc amplitude, or the coefficlent of fractional pareriage:

uhet 0] = AL 0] (339

where ﬂfr““rg (r) iz a single-particle wave function normalized to unity as
||1.'fr“‘ T814)|| = 1. We may explicitly construct these as

uger 2 (7)

r) =
I i aar

T Since the coordinates on both sides am internal ot mlative coordinates, ther is no center-of- mass mo tion oo
ither zide of this equation.

2 % keep the quanium mumber 7in tao places here, 2o both £37 and 714 Tg describe ze of quanmm mmmbeas
satisfying wrisngulsr coupling mlatons.

AIB(

- (3.3.7)
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for each set of quantum numbers for which the denominator iz non-zero.
This gives a fractional parentage expansion for the composite nucleus of

1=y Tal 'I I - A
DE, (&) = 3 A a3l ) [[ve) 8 ), 8 04, (60)] . (539
Ly, fef 8
The square modulus of Ag;‘rﬂ is
iTal iTal
Spep © = |45 PN, (53.9)

and iz called the spectroscopic fiactor. The spectroscoplc factor may be interpreted
ag a probability, namely the probability of finding core state T4 within a composite
state g when removing a nucleon In partial wave state £37, because

S |AlaT R = gilale = (5.3.10)

fasl fasil

Mote, however, that the Eqs. (5.3.8) and (3.3.10) mnst be replaced when antisym-
mmetrization is taken into account, as described in subsection 5.3.2.

Isaspin O coefficlents
It may be that the nuclear states @?A and ':If'f;:; have been defined with Isespin quan-
tumn numbers 7" and z-compenent 7, = 1(N—Z) as on page 104, In this case,
we will have constructed amplitndas ﬂgg}‘rg, which in general are different from

the A@LAIE' If the transferred # is a nucleen (¢ = 1) and is definitely a neutron

itz = zj of a proton (£, = —%j, then these spectroscopic amplimdes are related by
the isospin Clebsch-Gordan coafficlent & = (Fa¥5a,18: [T 5], as

Tal) Tal)
Alate = cAjlale, (5.3.11)

The relation between the corresponding spectroscopic factors is®

Fitate = orglale, (5.3.12)

FPhases of spectrascople amplitudes
The gign of the spectroscopie amplitndes Aj' I““TE' depends on

(i) the overall phases of both @A and @}1,
laps caleulated from therm,

(i} thecoupling scheme and order of coupling, which iz # + 2 =j, j + 14 = Ig here
Reversing a coupling order, for example vzing s + £ = j, changes the phaze by
(—1)4—=" Using another coupling scheme, such as the channel-zpin scheme of
s+Is = 8, #+58 = Ig generates another sot of cocfficients BESIE related by the
Racah algebra transformations seen in BEq. (3.2.3), and

which must be kept fixed for all the aver-

Y Pote that Satchler [22] and others have ueed a roverse notation, whereby 8 = &'28
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(iii}) the sign of the normalized radial wave functions v-é.:_;"fs (#): whether for example
these are defined to be posifive at infinity, or pozitive near the origine FRESCO
single-particle wave functions are defined to be positive near the origin (sse Ap-
pendix B).

5.3.2 Antisymmetrized theary

The analysis of the previous subsection 5.3.1 asmmes that the transferred particle
4 1z distinguishable from all other nucleons within the core A. Wa know, howevear,
that neutrens and protons are not distingnishable among themselves, and that, as
discussed in Section 3.4, microscople wave functions st be antisyrometric un-
der exchanging any two neutrons, or any two protons. This means that on, say,
removing a neutren from a miclens B, there may be 2 = 1 neutrons that could be
in the same orbital and rermoved in the same way The cross section will therefore
be increased by the factors w20 It would be desirable to include this effect in reac-
tion caleulations if we could just change the spectroscopic ampliides and factors
by multiplicative constants of /7 and % respectively. To determine whether this
iz possible requires a mmore detailed analysis of reaction theory, by using antisym-
metrized wave functions for all the nucleons present.

It has been shown by Macfarlane [25] and Anstern [26] that [kert groups of nu-
cleons have no influence on the spectroscopic factors. An inert group is one whose
configuration is commen to beoth @?A and 'iII'BE, and could be, for example, deeply
bound closed shells. Only the remaining ‘active’ nucleons need to be considerad
for antisyrometrization.

H the 1sospin formalism iz used for constructing @?A and 'iII'E;, then we do net
need to distinguish neutrens from protens. Otherwise, antisymmetrization and
counting sz identical particles is to be done separately for neutrons and for pro-
tons. Ancther forrnalism that is often recornmended for identical particles iz that
of second quantization. As Austern [26, p. 61] points out, however, the results
should be the same, and, if we can conslder particle labels correctly, we can aveld
the sizeable formal apparatus of second quantization. We shall see next that often It
15 better, for dynamical reasons, to separately consider direct and exchange terms,
ezpecially since exchange terms are moere often non-local.

The exchange amplitudes that should In prineiple be included in a complete
rzaction meodsl are exactly analogous to the additional reaction mechanisms that
possibly occur if the nucleons were not identical. Many exchange amplimdes are
analogous to knockout-exchange reactions, so they are small when knockout Iz
srnall, for the same dynamical reasons. They should both be small, for exarople, in
reactions at high energies, or when there are large momentum transfars.
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What 15 most important, howsewver, Is to at least calculate the correct magnimdes
of the direct terms, by, for example, counting the mirber of equivalent amplitudes.
The detailad derivation of the correct magnitude of the direct terms in a given re-
action Iz discussed in Austern [26, pp. 38-61], In Towner [27, §7.2] and in Satchler
[22, §2.11.3]. The result of this theory is that the correct results are obtained by
changing the constmetion of spectroscopic amplitndes as follows.

In areaction @ + A — b+ B by the transfer of nucleon or cluster v, let

|
nE = (P";E) = ;riil (5.3.13)
ba tha number of nuclaons in B that are in the same orbital, and identical to that
valence nucleon(s) v transfarred. Here, N g s the number of such valerce nucleons
innucleus B, and N4 = Ng—v Is the mumber of such identical nucleons remaining
in cora nuclans A

Instead of Bq. (5.3.8), we now define the spectroscoplc amplimdes by the overlap

equation

Tal) f I - A
B(ar) = ——= 3 45" i) %00 @ xal, 8 04, (6]
ﬂﬂ. T4 Aoy B
(5.3.14)
Since ©F, @4 and ﬂf;;“‘rg {r) are all normalized to unity, this gives
YRR = Y S =nf (5.3.15)

faily failg
ag the sum rule to be satisfied in place of Bq. (5.3.10). The spectroscopic factors
& are now to be Interpreted as a probability multiplisd by the mumber of avall-
able valence nucleeons, so that one-step cross sections are still proportional to these
spectroscopic factors.

5.3.3 Cluster overlaps

The general theory presented above still holds if the transferred particle v iz a
cluster of nucleons such as a deuteron, two neutrons, or an alpha particle. The
Intrinsic state 3, for the particle v of spin s 1z now the entire intrinsic wave function
of the cluster, and equations (5.3.14, 5.3.15) still hold.

Reactions involving the transfer of a cluster can aither be treated as the move-
ment of a single *particle’, or more microscopically as a combination of siomlta-
neous and sequential transfers.

The bound states of clusters treated as one particle are commenly found in a
Saxon-Woods potential with the same geometry parameters as are found for low-
anergy scattering of the same miclel. The number of radial nedes iz chosen by
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means of a shell-medel counting of oscillator quanta, to accemmedate the Pauli
exclusion principle, as follows.

Suppose that the valence nucleon shell has N = By + 7 quanta, that is MN=1
for the p-shell, 2 for the sd-shell, ete. If the transferred valance cluster is taken as
compeosed of v such mucleons, then the total energy of the cluster micleons will be
wNF. I the fsternal cluster configuration has M = 290, + £ quanta (0 for
s-shell clusters), then the cluster-core motion in partial wave L has IV nodes where

AN + L+ Minp = vM: (5.3.18)

Usually L iz fixed by the spin of the composite state, so IV may be determined.
MNote that W = 0,1, ... iz the number of nodes exriuding the origin. 1

5.4 General matrix elements
5.4.1 Conlomb and nuclear transifions

For initial ; and final L, states of a nuclens, the transition may in general be
governed by reduced matrix elements (L || V' || L), with the operator ¥ repre-
senting the relevant Coulomb, miclear or charge-exchangs processes that either are
spontanecus, or are induced by anether nucleus during a ceollision.

The Coulomb and charge-exchange matrix elemnents (when squared) may often
be written as proportional to a reduced transition probability B¢ — f) that de-
pends on the particular nuclear states, and other factors that depend on the interact-
ing partner. The electric quantities B{E£A, ¢ — f) of Bq. (4.4.3) and the magnetic
quantities B{MA,{ — f) are of thiz kind. Thelr definition allows them to be re-
lated to electromagnetic decay lifetimes, so measurements of these 1ifetimmes can
tall us the magnitude of the matrix elements neaded in various reactions, and vice
versa. (The phoses of the matrix elements are not determined, only thelr abszolute
magnitides )

For transzitions betwesn discrete states we may derive results, analogous to those
of subsaction 4.7.4, that give now not cross sections but trewsition rates T AN, § —
7y

T(Exi — f) = %%HA“B(EA,& — ) (54.1)
where & iz the photon wave number. The half-life is ¢ 1= (In2) /7. The same
equation relates T(A A) to B A A) for magnetic transitions.

10 The wm parameter for FREZCO bonmd stabes includes the origin, so M = M 4+ 1 = 1.
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5.4.2 Allowed [-decays
For allowsed -decay transitions, the only contributing matrix elements are those
of the Fermi and Gamow-Teller operators, as defined in Section 4.6, We define
weak-Interaction reduced matrix elements by analogy to the electric and magnetic
elernents above. The Fermi reduced transition probability iz defined, following
Echrand Mottelson [28, App. I'], using a sum over all micleons &:

z

. arr
Bifii =1 = QI--:I Z':‘I"f | ¥3 gvt_(k)é(e — eg) || Ts
¢ k
F
Sni; gt
T aL+ld4r Zk:'i‘l’f [l £ (k) || Ty (54.2)

where £_(k) 15 defined on p. 104 as the Izospin lowering operator for the &'th
muicleon. From experiments, the vector coupling constant gi- 1s found to be

gy = (1.40£0.02)107** ergem® (5.4.3)
et it
= (1.36 £ 0.02)107° : (34.4)
MEck
The Gamow-Teller reduced transitfion probability 1z correspondingly
1 g | §
B(GT,¢ =_—== Dp || Bspt_(k) [| T 345
(GT,t = 1) = 7 g [ 201 1 2560 1 V) (54.5)

where the axial-vector coupling constant satisfies ga /g1 = —1.73 £ 0.01.

The actual F-decay rate depends on the elactric field of the nucleus and its in-
fluence on the behaviors of the electrons after they have been emitted at various
energies, with the corresponding opposite variations in the neutrine energies. For
thesereasons, a dimensionless quantity f is usmally calculated to represant the alac-
tron and nentrine phase spaces, and 1s found by integrals over the electron spectra.
The F-decay results are then expressed as the product fi 1, for half-life ¢ i The
b L product (usually written just f1) then reflects miclear stucture by

2 _ gh

(5.4.6)
The transition decay rate 7" = (In 2) /% 1 Is thus proportional to B(f) + B(GT).

Exercises

51 Conzider a simple two-body description of the hale muclens ® C as a zsingle neu-
tron and an inert ¥ C core. The effective nuclear interaction between the neutron
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and M iz often taken to be a Woods Saxen form of Eq. (4.1.1), with radius

R, = 1.2AY? fm (A being the mazz of the core), and diffusencss @, = 065 fm.
The depth of the inferaction V; iz fitted to the binding energy 5, = 1.2 MeW

{a) Inwhat orbital do youexpect to find the nevtronin Y8C(g 5.7 Considering
the standard zhell structurs, what excited states would you expect to find?
Howr do yrour expectations compars to experiment?

(b} Determine the depth of the interaction that produces the correct binding
energy of ¥, assuming first no spin-orbit and next a spin-orhit strength
of T MV Compare the radial wave functions.

() Btudy the energy dependence of the n-14C phase shifts & (&) for ! =
0,1,2 and energies from 0.1 to 40 MeW Take the same scattering in-
teraction az for the ground state (with zero spin-orbit force) for all partial
waves. ATe there any resonances in the systemn? I yes, what are theirchar-
acteristic quantum numbers, and the ¢ omrezponding energies and widths?

(d) What iz the «ffect of the spin-orbit interaction on the phasze shifts caleu-
lated in {c)?

Conzider that the low-lying levels in #"Ca can be described within a vibrational
model. Bazed on the experimental B(E2) strength connecting the first 27 state
with the ground state, determine the deformation length of the nuclens.

E:timate the potential between a neutron and Y0 with the zsingle-folding model.
Usze the B3 NI effective interaction and azsume a Gavzzian distribution for the
nucleons in 170 with the radiuz of 2.5 fm  Compare with the rezult for the J1M
interaction.
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6

Solving the equations

It iz nice to know that the computer underztands the problem.
But I would like to understand it too.

Eugene Wigner

In ordar to find the S -matrix elemments and hence the cross sections, we have first
to solve the coupled equations that represent the Schrédinger equation in the
partial wave basis that we use. For elastic scattering we have a single second-
order differential equation, and in Section 6.1 we expand on the details of the
solution methed outlined on page 54. We subsequently discuss iterative and exact
solution mmethods for beth bound state and scattering problems, and in Section 6.5
we see how R-matrix methods are generally suitable for solving coupled-channels
problems.

6.1 Elastic scattering

For sach partial wave L, we need to numerically solve the one-channel radial
Schrodinger equation of Bg. (3.1.10):

with boundary conditions of

xL(0) =0 (6.1.2)
xtla) = 3 [Hy(n, ka) — SLHS (7, ka] (6.1.3)
xe(a) = 1 [H'(n, ka) — S HE (n, ka)] (6.1.4)

for matching radius . The derivatives H' are with respect to A.

1584
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The differential equation mmay be rewritten as

XL(R) = f(R)xr(R) (6.1.5)

for f(R) = i—’[:[V(R) - £+ %

Trial solutions

This one-channel problem may be solved as follows. We use a trial selution ¢( &)
with initial conditions ¢(0) = 0 and ¢'(0) = p for some non-zero constant p. The
differential equation (6.1.5) may then be integrated mimerically, to determine y{ K)
for all A. The desired solution 3 z(F) has some other Initial derivative, and 1s thus
proportional to this trial solution:

cy( ) = xp () (6.1.6)

for some unknown scaling coefficlent ¢ Its value mmay be found by solving at
i = a the two siomltaneous equations

cy(a) = /2 [HE (n, ka) — SpHE (7, ka)] (6.1.7)
cy'(a) = 1/2 [HE (m ka) — SLHF (7, ka)] (6.1.8)

for the two unknowns cand Sz. If only Sz, Iz required then it is perhaps simopler to
formn R = pia) /{ap’(a)) and then find 8¢ by Bq. (3.1.30).

Numerical integration

To produce the trial solution, the numerical integration of Eq. (5.1.5) generally
proceeds by defining a radial step size h, so the wave functions are defined at
a grid of points az ¢, = p(nh) fao= = 0,1,3,...,m, up to m,h = «a, the
matching point. The initial conditions are g5 = 0 and g = p, some non-zaro
initial derivative. Equation (6.1.5) iz a second-order differential equation and may
easily be comverted to a palr of coupled first-order equations for p(K) and =(R) =
3'( R). This would allow, for example, Runge-Kutta methods to be usad, producing
aventally giving g, and also x,, = ¢/, for use in Bq. (5.1.8).

Eecause BEq. (9.1.5) has no first-order derivatives, and such derbvatives rarely
occur in nuclear scattering calculations, a more efficient alternative method is that
of Mumerov. It uses as starting conditions the wave function values at two adjacent
radial peints: yo = 0 and g1 = ph, and propagates the solutien, fore =1,3,.. .,

by
L e [(2 + ]-Dfn)yn - yn—l(l - fn—l)].-;(l - fn+1): ';6-]--9;'

whete fp = REfn/12with fn = f(nh). The division here sometimes gives prob-
lemns: itrequires a special treatment of 2 = 1 for I = 1 to avold a division by zero,



194 selving the eguations

and does not generalize efficiently to coupled-channels problems. A more comve-
niant method is therefore the ‘modified Mumerov method® [1], which integrates an
auxiliary wave function z, by

Znt1 = 2En — Zn_1 + R° fnin, (6.1.10)

fromn which the true wave function is found by pn = (1— fﬂ,) #n. The z, integration
mmay be started by &, = 0 and #; = ph. The S matrix Iz now found by satisfying
the boundary conditions of Bq. (5.1.7) for ¢, at two distinet radii, say 1 = 1, and,
2V, Tlg—5, slnce the first derivative Is not available for direct matching. (For this,
we must have chosen (m,—5)h > R,, the maximum radius of the potential )

The accuracy of Runge-Kutta or Mumerov methods requires that the step size i
becommes smaller as the local wave numbers k( F) = +/(F—V [ F))2u,/ A2 increase,
so that there are a sufficient number of radial peints within each escillation of the
wave solution. Atftractive potential wells increase the local &(R) in the Interior as
V(R) < 0, but when imaginary optical potentials are used the absorption means
that the interior enhancemment iz less Important. A practical guideline is that the
product kh 5 0.2 for at least the asymptotic & that appears In BEq. (6.1.7). Further
‘enhanced Numeroy methods’ have been propesed [2], which are mers accurate
for high-energy scattering with slowly varving potentials as they allow larger kh
products.

Ancther Influence on numerical accuracy is the large centrifugal barrier L{ L 4
1)/R® for small F. Again, a practical guideline is that in the Numerov method,
the starting A = gy, peint should be of the order of Ay, 2 2.0LA. This s to
move the starting point increasingly away from the origin as L increases, so the
centrifugal barrier (~ L% /R%) does not bacome too large.

6.2 Classifications

The feaszible methods of sclving the partial-wave equations are very different for
different kinds of couplings. In particular, they depend on whether the couplings
are local or non-local in the radii R, for all the partitfions = Non-locality iz another
name for the case that A, # Far. Let ug classify thess cases, and see where
they might tvpically occur, because non-local couplings make selving the coupled
equations more difficult.

6.2.1 Local and nen-local conplings
The coupling operators ‘L}G‘fa, = Ra{e|Vi|e') R as defined in Section 3.2.2 cou-
ples ta channel a from channel o', and may be local or non-lecal according to the
pliysical process being described with the interaction potential V.
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Typically, inelastic couplings of Section 4.4 with = = =’ and pt # p't’ are local,
which means that B, = R,. The effect of operating with ¥ on a channel wave
function at radius F, iz therefore to give a resulting source function at the same

radins:
Vit (B ) = Vi (Rt (Ra). (62.1)
The ‘inelastic form factor” V% (R.,) is thus a function of one variable R

For transfer conplings of subsection 4.5.1, however, the prior and post mass
partitions and radins vectors are different, and the dynamics of recoil give rise to
non-local couplings. Such couplings are described by specifying a two-variable
kemel function VIt (R R /), as for example in Bq. (4.5.14), so that

‘L};af’gﬂar|Rm = Rﬂaﬁﬂa’}ﬁ;ﬂﬂw(ﬁmfj (62.2)

may be written explicitly as
ﬂ‘;afwaq& = fdﬁzfvjjfmf(ﬁm,ﬁmfma;(ﬁﬁq, (62.3)

The Nai, opetators of Bq. (3.2.50) are also non-local for transfer couplings. Be-
cause local couplings are mmch easier to specify and include numerically, some-
times we may consider using the “zero range approximation’ te a nen-local cou-
pling of BEq. (4.5.16), so that

VoS By Rt £ 8 R Rt} Vi Fn), (62.4)

Elastic conplings with = = ' and pt = p’t’ are usually diagonal (cccasionally
with a stoall non-lecal term added). If local, then

Vieeliee| Fz) = Ul B}t [ F) (6.2.5)

for some dicgonal monopele potentinl U A ).

6.2.2 Simplified solutions

We zaw In subsection 3.2.2, Bq. (3.2.52), that a set of IV coupled equations have
the genaral form

Iy
(Ha ~ Ba] o (Fa) + 3 Vagtiga:(Fa) =10, (62.6)
Pt
where o; Identifies the Incoming elastic channel. Letus consider various ways In
which this set of equations &« = 1,...,N may be applied in practice, and also
sometimes simplifisd.



198 selving the eguations

Kinds of channels

H transfer channels in different partitions are coupled, then we call the set coupled
reaction channels, or CRC. If breakup channels in the contimmm are included
with some discretization methed, then we call the set coupled discretized con-
tinuum channels, or CDCC. I no transfer or breakup couplings are included, just
bound inelastic states, then we often refer to plain coupled channels, or CC, sats.

Simplifications
Elastic scattering: If W = 1 then there 15 only one uncoupled channel, o, with
equation [Ha, — B, [thaye( B ) = 0. Within a larger set, this is the channel which
iz sure to be strong, because of the incoming beam.

One-step I'WBA: If an N = 2 set consists of an elastic channel o; and another
channel 3 with only coupling from o to 5 via Vg,,:

[Hﬂé - Eﬂé]waéaé(ﬁaij =10
[Hs — E5] ¥ (Rs) + Vanthey (Reg) = 0, (62.7)

then subsection 3.3.5 shows how this is equivalent to the first-order distorted-wave
Born approximation, or DWBA

N-step DWBA: For a general set of ¥ + 1 channels, we may consider the se-
quence of NV steps of couplings ¢ =1 — 2 — +. - N+1, we set oy = 1. These
will be considerad In more detall on pags 202.

Coupled-channels Born approximation: If the coupled-channels collection is
divided into two sets, It iz possible to solve the full coupled-channel: problem
within each set, but enly Inclnde to first order the couplings Perween the two sets.
This may be useful, for example, when there are strong collective excitations for
both the initial and final nuclel, but weaker transfer couplings that connect them
This mixture of coupled channels and first-order Born appresimation iz called
coupled-channels Bowm approximation, or CCBA.

6.3 Multi-channel equations
6.3.1 Alternate methods
This chapter discusses the methods used to solve the coupled reaction channels
equations (3.2.51), when there are beoth local couplings V;a,(ij and non-local

kernels Voo Az, Ao In general. We will see in the next section that a group of
M equations can be selved ‘exactly’ (mubject only to radial discretization errors)
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by finding a set of A linearly independent groups of solutions, and taking a linear
combination of these which satisfies the required boundary conditions. This ‘close-
coupling” methed is only practicable, however, if there are not too many equations
{the numerical effort can rise as A%), and if there are only loral couplings. With
local couplings the independent solutions can be found in a single cutward “sweep’
of some AFE radial trial functions. Non-local couplings mean, however, that the
solrce terms at a given radius depend on the wave functions at other radii beth
larger and smaller, so that this ‘exact’ methed becomes impractical

In many cases of interest In nuclear physics, nevertheless, because the non-lecal
couplings are not too strong, they can be treated as successive parturbations. They
can then be applied iteratively until further applications have progressively smmaller
affects, and the solutions have converged (to some preset criterion of accuracy).
Some failures of convergence can be remedied by the use of Padé approximants,
as discussed on page 207, ctherwise R matrix methods may be used as described
in Section 6.5,

6.3.2 Close-coupling methods for local cauplings

The coupled equations of Bq. (3.2.52) for a given Ji; may be rewritten to appear
like Bq. (6.1.5), but now with a vecter of channel wave functions 4., . and a matrix
of coupling petentials V(A). Again we Integrate a trial selution, now a matrix Y,
ag the solution of

YH(R) = F(R)Y(R) (6.3.1)
D Lol Lot 1)
FW(R) - B ]+ %:
whare the energies £, and centrifugal barriers are diagonal matrices.

These coupled differential equations can be sclved, following the method of
[3]. by forming the linearly independent solution sets [ g(F)}, where the F'th

solution consists of a set of all channels (& = 1., . A) that iz made lineady in-
dependent of the cther sets by having a distinetive starting value at £ = Rmigt

for F(E)

I:licaRnﬁn:]Lﬂ-‘-l

(6.3.2)
for the initial conditions in the radial integration of equations (5.3.1). The factor of
dzp may be varied. Thess solutions together form a matrix, where the row index of
Y refers to the channel within the coupled channels, and the column index refers
to a linearly independent selution. The boundary conditions of Bq. (3.2.10) are to
be satisfied by the 4f.q, selution, for Incoming plane wave in channel o;.
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The solutions i, are linear combinations of the ¥, g(F)

M
VYaz, = 3, cha; Ve (B, (63.3)
A=1

again by satisfying the boundary conditions of Bq. (3.2.10) at £ = « and say
H =g — 5h. The 5-matrix elements are a product of the matching procedurs.

H only the S matrix iz required, and not the wave functions (i), then cal-
culation of the R matrlx may be useful In place of the one-channel definition
Eq. (3.1 28) we now use the matrix expression

R ="/(a}[a(a)], (63.4)

which is independent of the starting derivatives in Bq. (6.3.2). The S matrix may
then be found by a multi-channel generalization of Eq. (3.1.30):

§ = [H" — aRH™]7'[H™ — «RH™], (63.5)

where the matrices HY are composed with the Coulomb functions HZE along the
diagonals.

For cross sections, the S matrix and wave functions g, are needed only for
those columns o; corresponding to one of the incoming channels for fixed total
spin Jr and parity . If the sum of the Incoming projectile and target spins is
greater than one, then there will be several such o

Tolsma and Veltkamp [4] point cut one difficulty with this method, which is
that if the couplings V(K] have strong off-diagenal compoeneants, then the linear
independence of the columns of Y g i) will be reduced as i increases through a
classically forbidden region. This iz because the components with negative local
kinetic energy will generally consist of an exponentially growing part and an expe-
nentially decreasing part. The former are responsible for a tendency to destroy the
Initially generated linear independence of the solution vectors. The longer the inte-
gration continues through a classically forbidden region, the stronger thiz tendency
toward instability will be; for instance, it will occur in scattering problems of nu-
clear physics with ensrgies near or below the Coulemb barrier. For large matching
radii ¢, maintaining linear dependence at low energles becomes rather diffienlt.

Tolsma et al. [4] propose a stabilization procedure to menitor and if necessary
ra-orthogonalize the solution vectors. If this were not done, there would be large
cancellations In the sum of equation (6.3.3), resulting if severe In complete loss
of accuracy of the S-matrix elements and the selution wave functions. A similar
problemm occurs at small radii, inside all the centrifugal barriers, and this may be
rmedied by Increasing the starting radins Fmin at which the radial integrations
begin, as already discussed for one-channel selutions. In the mnlti-channel case it
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iz meove necessary, for reasons of stability at small radii, to have a minirum radius
proportional to some angular momentum L typical of the coupled-channels set:

Rin 2 ¢z LR (0.3.6)

for some constant e, ~ 2.0, If this remedial action iz insufficient, then the R-
mmatrix methods of Section 6.5 may be needad.

6.3.7 fterative selriions

Trerative methods may be used as one way of solving the coupled equations, and
are often necessary when non-local (e.g. transfer) couplings are present. More-
over, there is alse a physical relation between sucesssive iterations and the N-step
DWEBA.

Leat us begin again with a model Hamiltonian & for the coupled system, as we
did in subsection 3.2.2. This Hamiltonian iz projected as before onto the partial-
wave basis states ¢, = |}, If £ 13 the asyroptotic kinetic energy inthe o channel,
then a channel-projected Hamiltonian H, satisfies

Ho — Ba = (palH — Elga) (63.7)

and will be composed of a kinetic energy term and a diagonal optical potential
The “interaction potential’ Vy, iz then defined to be everything in H not inclnded in
H., so

H,—E,+V,=H-E (63.8)

The kinetic energy In each channel is &, = & — e, depending on the mim e, of
the internal excitation energies, which is the same as the energy £, appearing in
Eq. (3.2.45). This construction gives Vo with vanishing diagonal matrix elements
(e |Vx|po) = 0. These are the same definitions as before In subsection 4.5.1, and
differ from those in subsection 3.2.2 by the movement here of the diagonal optical
potential from 17 into V..

Coupled equation set for N basis states

I we take the model Schrédinger equation [H — E)y = 0, and project separately
onto the different basis states ¢, we derive the set of equations

(B — HalYalBa) = > (#a|H — Elpg) ¥5(Rs). (5.3.9)
Bt

which couple together the unkneown wave functions 9, (F). The matrlx element
(o |H — E|pg) has two different forms, as we saw in Section 4.5.1, depending on
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whether we expand

H—-— K= H,— E;+ V. ithe ‘post’ form)
= Hg— F£g+ Vs (the ‘prior’ form).

Thus

(P|H — Blpg) = Vg + [Ha — Bo]Nag (post] (6.3.10)
or = V;EE + Nag|Hg — Eg] (prior)

whers

e = (BaValts), VEG™T = (8a|Valds), Naus = (dals). (6311

The overlap function Nag = (P |ds) In equation (6.3.10) iz the same as defined
in BEq. (3.2.50), and arizes from the non-orthogenality between the basiz states
e and ¢g if these are in different mass partitions. We will see below that this
non-orthogonallny term has no effect in first-order DWBA, and can be made to
disappear in second-order DWBA, If the first and second steps use the prior and
post interactions respectively.

N-step DWEA

Hthe coupling interactions V,, In equation (6.3.10) are weak, or fthe back-coupling
affects of these interactions are already included in the optical potentials of the
prior channel, then it becomes reasonable to use a multi-step distorted-wave Born
approximation (IWEBA) as introduced in subsection ¢.22. Let us consider such
a multistep approximation which labels the channels so that it always feeds flux
forwards® inthe sequence o =1 — 2 — ... — N41, neglecting the back cou-
plings. In the elastic channel o (here a;=1), the wave function is governed by the
optical potential defined there, and the wave function in the o channel iz driven by
couplings from all the previous channels:

i1
B — Hal YalBa) = > (@ulH — Elpg) d(Rs). (6.3.12)
A=1
Initial channel:
(£ — Hy] 41 (F,) = 0. (6.3.13)

Second channel:

[£2 — He]4z(Fa) = (#2|H — Fl#1)th1(Ha). (6.3.14)
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If the prier interaction iz used, the right-hand side becomes
= (ge]Valp1)n + (g2t} [H1 — Bt
= {2 |Va |1 ek as 4 satisfies Bq. (6.3.13) (5.3.19)
= Vi 1. (63164
Final channel: (¢ = N + 1)

c—1

[Be — Hol$o( e} = > (@ H — Eldhs) ¥a(Rs). (6.3.17)
=1

H the post Interaction had been used for all the couplings to this last channel, then

a—1 a—1
B — Helfe(Re) = > (@ecVeltsiths + [He— B2 > (@eldshts, (6318
g=1 A=1
S0
a—1
e — Ho x(Fe) = > V=", (6.3.19)
f=1
where we have definad
a—1
Xel Fe) = the + 3 (delitsha
f=1

= (eI},

Note that, as all the ¢ are square-integrable and hence decay faster than R=1 at
large radii, the 4f. and . are the same asymptotically. They differ only at finite
radii, and hence vield the same asymoptotic scattering amplimdes. The equation
for x.-has no non-crthogenality terms once the post Interaction is used in the final
channel.

These results Imply that In V-step DWEA, some non-orthogonality terms can be
made to disappear if ‘prior’ interactions are used for the first step, andfor i ‘post’
Interactions are uged for the final step. Thiz means that the nen-orthogenality
term never appears in the first-order DWBA, Irrespective of the cholce of prior
or post forms. In second-order DWBA, the prior-pest combination must be cho-
s2n to avoid the non-orthogenality terms [5]. It should be also clear that non-
orthogonality terrns will have to be evaluated i the DWEA iz continued beyond
second order
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Full zolution by fteration

There are a number of different ways of solving the CRC equations with the non-
orthogonality termns present: for discussions of different approaches see [8], [7]
and the survey of [8, ch. 3]

There are schemes avallable which can lterate all channels with an arbitrary
choice of post or prior interactions for all the couplings. Diefine

f.g = 0Dorl:presence of postin a f—eacoupling, (0.3.20)

sol — fas = lor0: presence of prior,

The following iterative scheme [9] (m=1,2,..) on convergence then solves the
CRC equations (6.3.9):

For vz = 0, start with

ng} = Ea,ﬂtéwalastic
500 = gy = p, (6.3.21)

Forn =1 — N (for N-step DWEBA) solve
[Ha — Ex + 0 =0 (6.3.22)
with

DL”_I:' = Z[ﬂaﬁvg,;st +(1- ﬁaﬁjvfgu] 1'5',{5“_1} - Eﬂgcn_l}s (6.3.23)
g

then caleulate for subsequent iterations

W =3 bagldaldgiy s (6.3.24)
g

S5 = 31— Gapllalts) 05 + [He - EglowY] (6329
g

PP = X syl (6.3.26)

This scheme avolds numerical differentations except in an higher-order correction
to 601, that arises in some circumstances.

When the nen-orthogonality terms are included properly, it becomes merely a
matter of mirnerical convenience whether post or prior couplings are used, for one,
two, and multi-step caleulations. The equivalence of the two coupling forms can be
confirmed In practice [10], and used as one check on the accuracy of the numerical
methods employed.
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6.3.4 Numerical Herations

I the non-local interactions V. K, i) in the CRC equations (3.2.52) are present,
then, without R-matrix metheds, it will always be necessary to solve the cou-
pled channels by Iteration. To selve Bq. (6.3.22), the coupled radial equations
of Bq. (6.3.1) become Inhomogensous, having an additional source term 0

Y(R) = F{R)Y(R) + Q(R) (6.3.27)

with F{ f) defined as before in Bq. (5.3.1).

Mow the trial solution matrix [ F) neads to include also a particular [khomoge-
neoys solution. Let this particular solution be dencted by Y g( i) for § = 0, and
for this solution we may for convenience choose the zero starting conditions

Yoo Fanin) = YVig( Feoia) = 0, (6.3.28)

incontrasttothe homageneous ‘r’fxﬁ for # > 1 whichhave non-zero starting deriva-
thees.
Then again the nesded solutions 4f ., are linear combinations of the Y g i

M

Vet = 3 Chers Ve FL) (6.3.29)
5=0

where g, = 1 always If 7 = 0. The whole Iteration procedure needs to be
tepeated for each required incoming boundary condition o as the E".-'.'"_;f_ Y will be
different, but the same Y _g( f) for & > 1 are used, and should be stored after thelr
first generation.

6.3.5 Canvergence af fterdative methods

The Iterative method of solving the CRC equations (3.2.52, 6.3.9) will converge
Hthe couplings are sufficlently small. The procedure will however diverge If the
couplings are too large, or if the system Is too near a resonance. On divergence, the
succassive wave functions wéﬂ will become larger and larger as w2 Increases, and
not comverge to any fixed limit. Unitarity will of course be viclated as the S matrix
elements will become much larger than unity.

Improving the comvergence rate

There are several ways of improving the rate of convergence, especially when there
are non-local potentials:

[A) Zolving some partial number of the local couplings exactly by the methods of sub-
zection 6.3.2, and iterating only on the non-local couplings: and the remaining local
couplings.
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(B} Usz Padé approximants to accelerate the convergence of the sequence of 3-matrix
clements.

() Find a separable expanzion for the non-local lemels, o that they can be inchided
exactly in the coupled-channels zolution.

(D) Expand the wave functions with a range of square-integrable basis states, and take
the coefficients of the wawe functions in thiz bazis as the unknowns in a system of

linear equati ons.
IE) Usze R-matrix «igenvalue expansions in an interiorradial region.

We discuss each of these in turn:

{A) Partial iteration: If the non-local interactions V,.( R, A"} in the CRC equa-
tlons (3.2.52) are present, then It will always be necessary to solve the coupled
channels by Iteration. With the local couplings, howevar, we have a choice whether
to iterate, or to inclnde them in the exact selutions of the close-coupling method.
A simple option is to allow a specifiable number N of channels to be coupled ex-
actly, with the remainder only being fed after one or more iterations. This would be
useful, for example, if the channels for the low-lying states of a highly-deformed
targat wera Included in thiz block of N channels, and if the remaining channels
{e.g. for transfers) were not fed by mmore than 2 or 3 steps beyond this initial bleck
Restricting the number of these iterations to one iz equivalent to solving a couplad-
channels Bom approximation (CCBA) model.

{B) Padé acceleration: It iz very useful to be able to iterate the coupled equations
in a conventional manner, as then 1-, 2- and 3-step IWEBA results (stc)) can be
recoverad by stopping the Iterations short of full comvergence. Using Padé acceler-
ation, as deacribed inthe next subsection and usad in [11, 12, 9], has the advantages
that it need only be employed if ordinary iterations are seen to diverge, and that it
transforms the previously divergent results with little new computational effort.

{C) Separable expansions: The szparable expansion methed works when a non-
local potential has a separable approximation V' = v} {v| for some vector v} net
necessarily normalized. This means that the kernel function factorizes as

V(R,R) = o(Rlv( ). (6.3.30)

A separable approximation allows a radial equation such as (8.1.1) to be sclved
using a superposition of homogeneous and inhomogensous solutions. If we want
to solve

[H — B]lx) + [v){v]x) =0 (0.3.31)

then, az well as trial solution ¢ R) of BEq. (6.1.6), we find also the Inhomogeneous
solution [H — Ely™N R} + (K) = 0. The desired solution is now the linear
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combination ¥(R) = ep( B) + cpp'™( R) that satisfies Bq. (6.3.31), which leads to
the requirement { {v|p™} — 1)e 4 {(v|y)cy = 0. This equation, in comnbination with
the existing Bq. (6.1.7), enables all the ¢ and Sz to be found. The method can be
generalized to a linear commbination of separable terms

A
V(R,R) =3 w(R)u(R), (6.3.32)
A=1

This 15 useful in nucleonic few-body reactions, but becomes unsatisfactory for
handling the nen-lecality in transfer reactions invelving heavier nuclel This is
bacause if the masses of the initial and final nuclel become large relative to the
mmass of the transferred particle, the form factor for the transfers becomes more
nearly local As we approach the no-recoil limit where the form factors would
be exactly local, the separable expansion of Bq. (6.3.32) of a nearly local kernel
requires more and more terms. In the limit of a local form factor, the separable
expansion will require the same mimber of termms A as there are radial grid peints.

{D1) Basis expansions: The method of expanding the wave functions in Coulomb,
Gaussian [13], Lagrange-moesh [14], Alry [15] functions has been used.  This
methed 1z practical provided the characteristic spatial widths of the basis states
were chosen in accordance with the wave numbers &, In the respective channels.
This requirement iz less severe with light-lon reactions, where the wave langths
are typically = 5{im. For some reactions, however, the oscillation rates are mnch
larger, and a meore economical method would be to expand in termos of sinuseidal
or Alry functions that depend explicitly on the local wave number over some radial
rzgion.

(E) R matrix eigenvalue expansions: This methed, describad in more detail be-
low in Section 5.5, 1s egsentially a variant of methed (D), where the basis functions
are now elgensolutions of some part of the physical Hamiltonian, namely the diag-
onal potentials. This method works even athigher scattering energies, since for the
basis wecan select a subset of the single-channel eigensolutions with aigensanargies
in the neighbourhood of the actnal scattering energy. The off-diagonal couplings
ara then diagonalized in this selacted basis.

Fuocdé approximants for sequence extrapolation

A glven sequence 55,5, ... of S-matrlx elements that result from iterating the
CRC equations can be regarded as the successive partial sums of the polynomnial

Fla) =S80+ (51— S)e+ (5 — S0 + ... (6.3.33)



M8 selving the eguations

avaluated at z=1. Thisz polynomial will clearly converge for & sufficlently small,
but will nacessarily diverge if the analytic continuation of the f{ ) function has any
pele or singularities inside the circle |#| > 1 inthe complex z-plane. The problem
that Padé approximants sclve Is that of finding a computable approximation to
the analytic contimation of the f(z) function. This is accomplished by finding a
rational approximation

_mtprEtpzit 4 ppi”
14+ qed+geid . +gne™

which agrees with the f(z) function in the region where the latter does converge,
as tested by matching the coefficients in the polynomial expansion of Fi, (#) up
to and including the coefficient of 2™+,

There are many different ways [16] of evaluating the coafficients {pin, 2o}, but
for the present problem we can use Wynn's e-algorithm [17], which iz a methed
of evalnating the upper right half of the Padé table at z=1 directly in terms of the
original sequence So, 51, ...

Pl (2) (6.334)

Wann's gpsilon algorithm

Initializing E,E,j:' = 5; from the given divergent sequence 55, and EI:;?% = 0, we may
generate an array using the mls
' '+1 '+1 1y —
edl = el b _ (6.3.35)

Allthe EE:' then map onte the transposad upper right half of the Padé table, includ-
ing the diagenal, according to

) = P s (1), (6.3.36)

BExperience has shown that for typical sequences the most accurate Padé approxi-
moants are those near the diagonal of the Padé# table, and these are just the right-most
EE‘E in the £ table.

When accelerating a vector of 5-matrix elements S, with a component for each
coupled channel, then it Iz important to accelerate the vector as a whole. Wynn
[18] pointed out that this can be done using the Samuelson inverse x~1 = (x -
x*) ~1x* where x* is the complex conjugate of 3. Otherwise there will be problems
when iterating (say) atwo-channel systemn with alternating backwards and forwards
coupling, becanse of zero divisors in the £ algorithm.

6.4 Multi-channel bound states

As well as mnlti-channel scattering solutions, sometimes couplad-channels bound
states are also needed. The bound state of a particle in a deformed potential will



&4 Multi-channel bownd siafer 209

have several channels with different angular momenta coupled together, and such
states may be needed for caleulation of transfers to or from deformed nuclel

There are various techniques for caleulating the wave functions of these bound
states: for a review see reference [19]. The Sturmian expansion [20] or R-matrix
eigenvalue (subsection 6.5) methods can be used, or the coupled equations can be
solved Iteratively. The expansion methods have the advantage that alf selutions
in the deforrned potential are found, where sometimes the Iterative method has
difficulty in cotrearging to a particular solution if there are other permitted solutions
near In ensrgy.

The iterative method has the advantage that the radial wave functions {once
found) are subject only to the discretization error for the Schrodinger’s equation,
and are not dependent on a more time-conmming diagonalization of large matri-
ces. Iterative solutions satisfy the correct boundary conditions independently of
the size of a basis-state set, and are anyway needed to find the Sturmian or channel
aigensolutions for constructing the basis states of those methods.

6.4.1 Caupled-channels eigenvalie problem

H a particle iz bound at negative energy £ around a (say) rotational core, its wave
function may be found as the eigenselution of a given potential:

[Tfli']":l + Vl:‘]":l +er— E]ﬂfs_?'f('r) + Z WE_?'I:f"sj"'f"('r)ﬂf"sj"f"('r) = 0i{64.1)
o

with boundary conditions wes;r(0) = 0 and weer(r) o W_ﬂ,“%(—zsc;r) as
r = a, where W_ﬂ,f_l_%(p) is the Whittaker function and &% = 2u|& — er|/R*
iz the asymptotic wave number. The total spin JJ index has been suppressed. The
couplings V{r) may be caleulated using the theory of subsection 4.4.1.

H the core cannot be excited, then these coupled equations reduce to one uncou-
pled equation, but selving thiz equation can still be regarded as a special case of
the coupled bound-state preblem. Eigenselutions can be found by solving either
for the bound-state energy &, or by varying the depth of the binding peotential for
1 specified eigenensargy £. In general, furthermere, we could choose to vary any
mmlfipele of any part of the binding potentials (except the Coulomb compeonent).

All of these eigenvalue problems may be regarded as special cases of finding
elgensolutions of a set of A coupled-channels equations, represented as the ques-
tion of finding an eigenvalue w to satisfy the equations

z ik
2 L aer+ Do) someaer =0 642

=1
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with boundary conditions

dula) = pW_p 1 (28 F) (6.4.3)
tlatoB) = pW_, , o1 (—2k;(a+0R)) (6:4.4)
#:(0) = 0, (64.5)

and &% = k& + 6w and mp = 14/(2k;), for given partial waves #;, fixed potentials
U;;(7], varlable potentials ¥, (r ), matching radins e, and Coulormb propertionality
constants v = 2y S et ! A The ps are as yet unknown coefficients.

The asymptotic energy constants k2 do net explicitly appear in Bq. (6.4.2) be-
cause we absorb them for convenience into the diagonal compenents Ty (r). Let @
be the asymptotic component of all the diagenal 5(r).

The solution begins by constructing the trial integration functions for a trial value
of w, on either side of an intermediate matching point r = 1!

Fin(r) forr from htory,, starting with fif(R) = &;; #5+1/(24,41)11, and

Fo3(r) forr from @ in to v, starting with f245a) = 65 W,

_mf_l_i( Skl

The intermediate matching point v = 1, should be chosen where the wave fune-
tions are still oscillatory, to aveld having to Integrate outwards into the classically
forbidden ragion. This is because, as discussad in subsection 6.3.2, we should In
such regions always integrate In the direction where the desired solution is increas-
ing.

The solution is tharefore

_ b i) forr <
#lr) = { Z e ft(r) forr = v, (64.6)

and the matching conditions are the equality of the two expressions and thelr
derfvatives at v = 1. The normalization is still arbitrary, so we may fix o; = 1.
In general the equations (5.4.2) have no solution as wis not exactly an eigenvalue.
The method therefore uses the discrepancy in the matching conditions to estimate
how w should be changed to w 4 éw to reduce that discrepancy, and iterates this
process to reduce duw.

Thus at each Iteration we first solve as siomltaneous equations the 204-1 of the
matching conditions

Za FB(rem) Zc ) for all é (6.4.7)

Za B (v ch.f blrm) foralli # 1 (6.4.8)
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dlong with ¢; = 1 for the 204 unknowns b;, ;. I the function ¢;(r) iz then con-
structed using equation (9.4.6), there will be a discrepancy as

o = AT e T B = A e (64.9)

and thiz difference will genearate dw via

M R
503 [ BO018 010 = )l — el (6410)
i5=1
It is necessary while fterating in this manner to monitor the mumber of nodes In
one of more selacted compenents of the wave function. When the Iterations have
comvargad to some accuracy criterion on the size of dw, the set of wave functions
can be normalized in the umal manner:

M =
qu () [Fdr = 1. (64.11)
i=1

6.5 R-matriz methods

The R-matrix methed, proposed by Wigner and Elsenbud [21] and promulgated
in detail by Lane and Thomas [22], uses an orthonormal basis expansion in the
interior of some R matrix rading e, using elgenfunctions of the diagonal parts of
the Hamiltonian as basis states. With the diagonalized interior wave functions it
constructs the R matrix of Bg. (6.3.4) to match to asymptotic Coulemb functions as
bafore. The novel faature of thiz method is that it uses afixed logarithmic derivative
at the R-matrix radins for all the basis states, to render the kinetic energy Hermitian
on a finite region, and hence malke the basis states orthonormal

The radial stepping metheds of selving the coupled equations oenly allow local
couplings to be treated properly, and non-local couplings from transfers have to be
Included iteratively. The present R matrix method is an equivalent way of solving
the coupled equations, and has the advantages of being more stable numerically,
and also allowing nen-local compenents of the Hamiltonian in an interior region to
be Included to all orders. It has recently been revived in miclear physics applica-
tions [14, 23] for these reazons. Both transfer and non-orthogenality non-localities
may be Included non-pertirbatively, and resonances and bound states may both be
described without difficulty.

6.5.1 ne-channel B-matrix expansions

We begin by describing how to solve the one-channel Schrédinger equation of
Eq. (5.1.1) with the new expansion method. Bven though it 1s more easily solved
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using the stepping methods of Section 6.1, the one-channel case here 1z Instructive.
It also turns out that correcting the errors in the one-channel expansion, by the
methed of Buttle [24], iz sufficient to correct most of the oulti-channel errors.

Consider again the one-channel equation BEq. (5.1.1). This has a selutien for
all continuum energies &, and because its scattering wave functions over a finite
range [0, a] are not orthogonal to each other they cannot be used as orthonormal
basiz states for an eigenvalue expansion. Ancther statement of that fact iz that the
kinetic energy operator 1s not Hermitian over a finite radial range, unless all the
wave functions satizfy some special boundary conditions to ensure the Hermiticity.
The R-mnatrix basis states are therefore chosen to ensure Hermiticity of the kinetic
anergy and hence the orthogonality of the elgensclutions over a finite interval. This
iz done by requiring themn all to have fixed logarithmic derivathees

= ) = Y 65.1
at i = a. They also satisfy w(0) = 0, and are solutions of
R ¢ d® L{L+1
— == - VIR — Hy=10 852
for some eigenvalues e,, 7 = 1,2, ..., labelling the distinct aigensolutions ac-

cording to the number of radial nodes in the wave function. We assume that the
V(R is real

At prezent §and ¢ are both free Input parameters, and the same results should be
cbtained on comvergence for any value of 8, and for any matching radius cutside
the potentials.

COrthonovmal Rasis

Suppose wal ) and wn(R) are two solutions of Bq. (6.5.2) with eigenenergies
Ep F £ I we multiply the w, equation by w,,, and subtract from the exchanged
equation, we obtain

- E[wmw: — Wty + (Em — En)Wrtwm = 0. (6.5.3)

Integrating this equation by parts with limits & = Oto o gives

s ' ’ ® —
_EL [wm(a)wn(aj_wn(ajwm(aj] + I:Em _En) -[j‘wnwde =0, (0.5.4)

in which the first term iz zero since both w) fw, = w0, fw, = & at a. This
implies that, since £, # £, distinet eigenstates are orthogonal We now assume
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that the w,, basis states are all normalized to unity, so they may all be taken as an
orthonormal set satisfying

f (B (R)AE = (65.5)
a

Expansion of the scattering wave fukciion

We now wish to constuct the scattering selution x () of Bq. (6.5.2) at general
anergy £ as a linear combination of IV states w, according to

N
x(R) = Aywa(E) (6.5.6)

for coefficients A, = [} w,(R)x(F)dR to be found in agreement with the usual
scattering boundary conditions of Bq. (6.1.2). We expect to approach convergence
as IV increases.

MNote that we can met simply match the wave functions and derivatives of each
side of Eq. (6.5.6), as might be expected from elementary quantum theory. If we
do thiz, then, since all the w,(F) have the same logarithmic derfvative 3, so will
their surn on the right side of the equation. A scattering wave function x( &) cet-
tainly does not have a fixed logarithmic derivative! This discrepancy comes about
from the manner of convergence of the sum (8.5.4) as a function of V. The con-
vergence 1s only with respect to the values of the wave functions, and xot thelr
derfratives. BExactly how this convergence proceeds will be illustrated in Fig. 6.1
balow. The lack of comvergence of derivatives means that we st instead use an
Integral expression to find the expansion coefficients.

H we repeat the procedure of the previous paragraph with the pair of solutions
e FL) and x{ F), then in place of Bq. (5.5.4) we have

—;i—“ [x(a)wn(a)—wa(a)x ()] + (F—£n)dn =0, (6.5.7)
which gives
A = o i@l (@) =X (@)
= ﬁ—zw”—wbr’(ai — Bx ()] (65.8)
T due,—F XLl -

H we use these expressions in Bq. (5.5.09) evaluated at £ = ¢, we obtain useful
information about the logarithroie derivative of the unknewn solution x(H). We
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gat
M wala)
x(e) = Z - b{ () — Bxle)]wa(a), (6.5.9)
x(a) _ A* wg(a)?
x(a) — Axla) Z ‘ Qfien — B 0210

I @ were zero here, the left side would be just x(a) /x'(a), which is exactly the R
matrix defined in BEqs. (3.1.28, 6.3.4). Because we now want freedom to choose
for other reasons, we now define a ‘generalized’ R matrix for a wave function as

_ 1 x(R]

=-__ K7W (6.5.11)
a X' (R) — Bx( i)
in terms of which the S matrix, instead of Eqs. (3.1.30, 63.5), Is
- —_ —
g_ H —aR(H " —pH") (65,12

H+ —aR{H+-gH*)
It is therefore into this equation that we substitute the R-matrix expression
ﬁz
- Z ’“’”(“ (6.5.13)
Q,ua Ep—
We now define for each pole w2 the raduced widith amplitudes
hZ
o=\ g el (6.5.14)

in terms of which the R matrix has the familiar simple form

N ’}'2
R=Z£ ol (6.5.15)
n=1 "

The 2 are called the reduced widihs.
The scattering wave function in the same approximation is

h
=3 I o8 | a) = px(@un(R). (6519
L E
The convergence with &N of this wave function iz Hlustrated in Fig. 6.1. We ses
that even though the function of (5.5.16) has zero derivative at the matching ra-
dius, it still converges closer and closer to the correct wave function with non-zero
derivative.
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xR

10

Radius (frn)

Fig 6.1. Comergence of the one-channel scattering wave function with varying numbers
of basis states, for @ = & fm and § = 0. W plot the real part of pyy; nevtron scattering

wave function on “He at 5 MV,

6.5.2 The multi-channe! B matriv

This method for mnlti-channel problems uses as basis states the eigenfunctions of
the real part of the diagonal petential in each channel. If the boundary condition
of Bq. (6.5.1) iz uged, these form an orthonermal basis set. In that way, diagonal
rzal potentials within the coupled-channels set are treated more accurately, while
off-diagonal and all imaginary potentials are treated via thelr matrix elements in
this basis.

This means that the basis functions should now be written as wl( A,) for the
s'th basis state in channel o, with radial coordinate B, to follow the notation
for the coupled equations (5.3.9). It is most comvenlent to take thern as all the
eigensolutions of the dlagonal real potential T7, in each separate channel:

[TQL(RQJ + Ual Ra) — sm]wg(ﬁaj =0 (6.5.17)

for algenenargies £, with the basis functions again all having fixed logarithmic
derivatives § = dInw?( K] /dF,, at a.

The wave functions of the coupled problem (6.3.9) can now be sclved com-
pletely over the interior range [0,«], by using the orthonormal basis set of the
[ ) } with coefficients to be determined. The coefficients are found in two
stages: first by finding all the eigensolutions g§(f.) of the equations (6.3.9) using
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the above orthonormal basiz, and then expanding the scattering wave functions In
terms of these gh( ).

In the traditional R-matrix method, the diagonalization of the A -channel Hamil-
tonian in equation (5.3.9) proceeds by finding the radial wave eigenfunctions g, Fe)
in that basis. This is to solve

[Tz + Uz + £a] Ga(Fa) + > Viwt Gt (Rat) = € gal Ra)y  (6.5.18)
o ey

whete Vi refers to all the eff-diagonal couplings, local or non-lecal, since the
diagonal real potentials U7, already appear, and the energies e, are the cors ex-
citation energies in each channel. This yields P = NAM elgenenargies e, with
corresponding multi-channel eigenstates

Iy
G5(Ra) = 3 | EG(Aa), (65.19)

n=1
Bigenstates here with e; = 0 are close to the bound states, while solutions with
g, > Ocontribute tothe scattering solutions. Certain of the e, > 0 solutions may
correspond to low-lying resonances If those are present, but the majority of the
positive sigenenergies have no simple physical interpretation. These g&( B, form

another orthonormal basis in the interior region if the Hamiltonian 1s Heromitian.
The coefficients & and energies ep In Bq. (6.5.19) satisfy matrix equations

(Enee+ €) B + 3 (0l | Vi |02 eE = epel (6.5.20)
it

for each eigenstate p. These are eigenvalue equations of the matrix form
Hec = ec. (0.521)

Because our coupled equations may have different reduced masses in different
transfer channels, we now define a third form of the R matrix by

2 a(Re) = &3 Rt (B) | W) — PR (65:2)

Here the factors ¢, = A%/2u. are placed to render the R matrix symmetric aven
for transfer channels. The progressively more generalized R-matrix definitions are
summarized in Table G.1.

For scattering states at arbitrary energy £, the coupled scolutions are then ex-
panded in terms of the multi-channel eigenstates as tfae, = Zp Aok The R
matrix for this wave function, using Bq. (6.5.22), can be calenlated [22, 25] from
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For partial wave L, Bq. (3.1.28) at radius a defines the matrix element
1 xzia)
o xg(a]
For a matrix of coupled-channels solutions, Bg. (5.3.4) defines the matrix

L= (6.5.26)

R= %‘r’(ai RG] (6.5.27)

For one channel, with legavithmic boundary condition 5, Bq. (0.5.11) defines
the matrix element
_1ox@
ax(a) - Bx(a)’
For coupled transfer chankels, with § # 0 and variable veduced masses i,
Eq.(5.5.22) defines a matrix Rqr by

(6.5.28)

Y o) = @3 R [0 (@) — ()| 47, (6.5.29)
using ¢, = A%/ 2u,,. In matrix form with t as a matrix of diagonal elements ¢,
13 V() = « R [Y'(a) — 5Y(a)] 5, (6.5.30)

50
R=- t2 Yia)t [‘T’ () — @Y ()] (6.5.31)

Box o1 Progressival}r more flexible definitions of the R matrix

the g&(a) eigenfunctions by the standard methods, which are similar to that given
in detail for the one-channel case leading to Bq. (6.5.10). We find

Ro(E) = ﬁz g (a) gar(ai %/; (6.523)

The recduced width amplitudes for each channel o and pole p,

_ Jta _
Tm—gﬂtal— gﬂaagg':“)’ (6.5.24)

in terms of which the R matrix has the familiar form

Is
Too Yo
B = . G525
RQG!I: ) E:p _ E I:. ;I
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Linear equations for the R matrix

There is an alternative method [26, 14] for finding the R, which does not diago-
nalize the matrix on the left side of Bq. (6.5.21), but solves a set of linear equations.
We nead the solution of (H— £)x = wia) for the right-hand side consisting of the
values of the basis functions at the R-matrix boundary. Then we can solve directly

R=a1t3 wi(a) (H - £)~! w(a) 13, (6.5.32)

using the notation of Bg. (6.5.31). This method has the advantage of naturally con-
tirming the R-matrix methed to complex potentials, aveiding the diagenalization of
nen-Hermitian matrices.

Scattering 5 matrix and wave functions

Using BEqs. (3.2.10) and (6.5.22), and writing the Coulomb functions H* as diag-
onal matrices as we did before at Bq. (5.3.5), the scattering 8 matrix iz given in
terms of R by

§ = [tzH* — aRt3(HH—gH* )" [t2H- — aR tz(H~'—pH")].  (6.5.33)

The scattering states at the arbitrary energy £ and incoming wave in channel oy
are linear cornbinations of the multi-channel eigenstates of Bg. (6.5.19):

Yoei(Fa) = Y AL, gH(Ra), (6.5.34)
T
with expansion coefficlents for sach eigenstate p and incoming channel o; of
= 1 S [Gute (B () — O H (ki)
=% QMEF_EQ.- ot 2= Lo\ LMo

— S (HF (k) — ﬁHE‘(kafa))] . (6.5.35)

Buttle corrections

BEwven the one-channel R-matrix values are only correct In the lmit of an infinite
murnber of basis states V. In the one-channel case, howevear, wecan easily caleulate
the exact solution by the methods of Section 6.1, even if the diagenal potentials
are complex, so it is straightforward to caleulate the errors arizing from having a
finite basis in this case. The proposal of Buttle [24] is to calculate the one-channel
corrections to the R matrix, and apply them additively to the dizgeona! terms of the
mmamy-channel R matrix. Thiz iz clearly exact in the limit of zero couplings, and
iz surprizsing efficient even when the couplings are stronger. The Buttle correction
can be used not enly for real diagonal potentials, but also for complex optical
potentials, in order to correct for finite-basis effacts In the weak coupling lirit.
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The methed, therefore, to Improve the accuracy of caleulations with finite W
{and hence finite P), is to add a ‘Buttle correction’ to the right-hand side of BEqs.
(6.5.23, 6.5.32). This modiies the diagonal terms R, (&) to reproduce for each
uncoupled problem the exact scattering solution %o (Fe) after this has been in-
tegrated separately. From the definition of the energy elgenstates wl(H.), the
R-mmatrix sum from (6.5.23) for each uncoupled channel is

ﬁz M wn(ajz
RE( A = = 0.53.364
ME) =52 ) 5T (6.5.36)

n=1

and the exact one-channel R matrix is R(£) = a1y (a) /(3 (a) — Sx.la)).
The Buttle-corrected fill R matrix to be used in Bq. (5.5.33) iz then

R (E) = Ruw( B) + G [ RO(E) — R;(E)]. (6.5.37)

The energy E can be equal to &, or chosen just near to it i necessary to aveld
the poles In Bq. (6.5.30), since the Buttle correction (in the square brackets) varies
smoothly with energy.

RO matrix elements

The zelution of the CRC equations (5.3.9) with all the non-orthogenality terms In
Eq. (5.3.10) requires in Bq. (6.5.20) the matrix element integrals of the form

(W0 Vot [0} = (007 | (D] Him — B D) | 0T) (6.5.38)

for m = o (post) or m = of (prior). In the post form, H, contains T + U,
and since w? 1z just the eigenfunction of this operator with eigenvalue £, we can
operate to the left to obtaln

(0 Vot 103 Jpeet = (w2 @a|Val Darwl) + (Ena— Ba) (w3 Pa| Darwli),
(6.5.39)
with the similar prier form

(00| Vit [0 pricr = (000 | Vit | Par™ )+ (00| T} (E it — B
(5.5.40)
The wave function overlaps in the second term (P [T ) go to zero asymptot-
Ically, and may be assumed small when F,, R, > ¢ The standard R-matrix
theory therefore still applies in the surface region R, ~ .

6.6 Counpled asymptotic wave functions

In the above descriptions, radial or expansion methods have been used to solve the
Schrédingsr equation in the Interior up to some matching radius & = a. The R
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moatrix is then found at thiz peint, and matching there with asymptetic Coulomb
wave functions H* allows the S matrix to be found to pradict the cross sections.
Bometimes, however, there are couplings outside the rading « that hawve largs radial
extents, and are not easily treated by the interior metheds. Such couplings could
be, for example, the Coulomb mnltipoles of subsection 4.4.1, or they could be from
photo-miclear couplings to weakly bound states, such as the proton states bound
by 0.137 MeV in ”B, or by 22 keV in an °0 excited state.

We have two ways of Including such leng-range couplings. Either wecan propa-
gate the R matrix from « to some large "asymptotic rading’ ez, where the uncou-
pled Coulemb wave functions & * can be used, or else we propagate the Coulomb
wave functions H* inwards to the smaller & radius, during which process they
becoms coupled.  The first R-matrix propagation methed is extensively used In
alectron and atomic scattering [27], using the algorithms of Light and Walker [28]
or of Burke et gl [29], whereas the second inward wave-function propagation can
be parformed either using the asymptotic expansions of Burke and Shey [30, 31],
Gailitiz [32], or Christley et al [15].

In FRE3CO, the metheod of Christley et ¢l [15] has been implemented, which
uses expansions on Alry functions, as these are exact single-channel solutions for
plecewise linear potentials. These expansions are used to integrate Inwards the
asymptotic uncoupled H* from a large radius Aegym to the matching radins a,
where they become now coupled Coulomb wave functions, and are representad by
full matrices HE . These H* and their radial derivatives can be used directly for
matching in Bqs. (3.2.10) and (0.5.33).

Exercises

6.1 What method similar to that for Eq. (6.3.31) provides a scattering solution 3 or-
thogonal to a given &, that iz {&y} = 07 This might be needed if ¢ iz a Pauli
forbidden state, and we want to implement Pauli blocking. Under what conditions
does thiz orthogonality requirement hawe no effect at any energy?

6.2 Conzider elastic scattering from a potential VI R) = ViI[ &)+ AV B) n a specific
partial wawe, and iterate on Vo (R for A =1

(a) Examinethe rate of numerical ¢ omergence, with and without Padé accel-
cration, and determine the form of the error series of powers of A

(b} Examinethe PWBA case when V] = 0, for ¥ being purely real, or being
purely imaginary.

c) Examine a cass when V] # 0 and near a resonance, to see if the Padé
acceleration iz succeszful in thiz case. Determine from the A series where
would be the pols in the complex A-plane.

6.3 What iz the meaning of the energies where the Buttle correction is zero? What
should we do to make it zero at zome specific energy, at for example a resonance ?



[1]
[2]
[3]
[4]
(5]
[a]
[7]
(8]
(9]
[10]

[11]
[12]

[13]
[14]

[15]
(18]
[17]
[18]
[19]

[20]
[21]
[22]
[23]

[24]
[25]
(28]

[27]
[28]

(28]
[30]

[31]
[33]

Exercires 221

References

b A Melcanoff, T Sawada, I Raynal, Math Comput Phys 6 (1968) 1.

A E Thotaciuz and E. D. Cooper, J. of Comp. Physics 72 (1987 70

E Buck, A P Etamp and P. E Hodgzon, Fhil Mag §(1963) 1805,

L. D Tolzma and G. W. Veltkamp, Comput Fhys Cormrmur. 40 [1986) 233,

T Udagawa, H. H. Wolter and W. R. Coleer, Phyr Rew Let 31 (15730 1507

E. Imanizhi, M. Ichimura and . Kawai, Phye Lefi. 528 (1974 267

2. R Cotanch and C. M. Vincent, Phos Rew © 14 (1976) 1739,

3. R. Satchler 1983, Direct Wuclear Reactions, Oxford: Clarendon Prezz.

1.1 Thompzon, Comput Fhys Kep. 7 (1988) 167

I & Lilles, B, R, Fulton, D. W. Banes, T. M. Cormier, I J. Thompzon, 5. Landowmne
and H. H. Wolter, Phys Lefr. 1288 (1982) 153; 1. 5. Lilley, M. A Magarajan, D. W.
Banes, B. R Fulton and I. 1 Thompzon, Mecl Phys A463 (19871710

J Raynal 1972, p. 28] in Cemputing Ar 2 Language of Physice, Vienna: TAEA
b Rhoades-Brown, M H. Macfarlane and 2. C. Pieper, Phyr Rev < 21 (1980)
2438,

M Kawai, M Kamimuyra, Y Mito and K. Takezako, Prog Theor Phys 59 (1978)
674, 676, M. Kamimura, Prog Theor Phys. Suppl 62 (1977 236,

D. Baye, M. Hesse, J-M. Sparenberg and b Vincke, J Phys B 31 (1998) 3439,
MNucl Phys A 630 (1998337

I A Chriztley and 1 T Thompzon, Cormp. Phys. Comen 79 (19947 143

P R Graves-Mormiz 1973, Padé Approximants, Brizstol: Institute of Physics.

P Wynn, Mumer Math 8(1966) 264; sec also A Genz, p. 112 mref [14].

P Wynn, Math. Compui. 16 (19617 23

W. Ogle, 3. Wahlborn, R Piepenbring and 5. Frederikszon, Rev Mod Phr 43
(19715424,

I M. Bangand I 2. Vaagen, Z. Physik A 207 (1980) 223,

E P Wigner and L. Eizenbud, Phyr. Kew 7201947 29

A M Lane and R G. Thomas, Rev Mod. Phys 30 (1958) 257

1.1 Thompson, B. ¥ Danilin, ¥ D. Efros, I 2 Vaagen, I b Bang and M. W
Fhulcow, Plys. Rew C61 (2000) 24315

P I A Buttle, Phys Rew 160 (156717159,

P G Burle and M. 1. Seaton, J Phys B 17 (1984) Lag3,

D. H Glazs, P G Butee, H W, van der Hart and C. 1. Noble, J Phwe 5 30 (1997)
3801,

W M. Burke and C. I MNoble, Cormp. Phys Cormuen. 85 (19957471,

J C Lightand R B. Wallkker, J. Chem. Phys 65 (1976)4272: E B. Stechel R B
Walleer and J. C. Light, J Chem. Phys 69 [1978) 3518

K L Balja, P G. Burke and L. A Morgan, Cormput Phys Commun, 27 (1982)
299,

P G Burke, D. D. McVicar and K. Smith, Prec Phyr Soc B3 (1964 397

F Ribzel, J Phys . 3 (19773 613

b Gailitiz, J Phys B9 (1978) 843,



7

Approximate solutions

I you meet an operator walking down Guildford High Street, youcan’t tell if itis
Hemmitean just by looking at it. You'™ve got to knew the environment it is living in.

fon Johnion

Approximations in physics are often very useful. In nuclear reactions in particn-
lar, depending on the specific regime, some approximations may offer a very large
simnplification of the problem and still provide great accuracy. Of course, to some
extent, all methods In nuclear reactions are approsimate, but let us consider that
the sclution methods discussed In Chapter & are the starting peints to which ap-
proimations can be considerad.

One 1dea appears when there are varilables with distinct timescales, as then an
adiabatic approkimation can be made. Anocther idea iz based on classical argu-
ments. By taking a certain trajectory for the projectile, we can separate out the
dynamics of the reaction and treat just what is happening to the projectile within
quantumn mechanics (Semiclassical methods). For Instance, at very high ener-
glas, the projectile’s trajectory 1s hardly bent and the straight-line approximation is
valid (called the eikonal approximation). For cases where the reaction iz Coulomb
derninated, taking a Rutherford trajectory for the center-of-mass of the projectile
may be adequate, and i so provides useful simplifications of the problem When
the potential iz very smooth and for slow reactions (low energles), we may make
use of the WHKE approximation. In this chapter we summarize the most Important
approximations used in reactions and discuss their limits of validity.

7.1 Few-body adiabatic scattering

The main idea behind any adiabatic meodel iz that we can separate a fast variable
and a slow variable, such that during the reaction the slow variable does notchanga
fromm its initial value. Here we consider the adiabatic high-energy approximation,

222
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dlso known as the sudden approximation, where the internal metion of the projec-
tile is considerad slow compared to the motion of the c.m. of the projectile relative
to the target. In the energy domain, the energy scales associated with the slow vari-
able should be much smaller than those associated with the fast variable, and so
we can assume the projectile excitations are practically degensrate with the ground
state, by comparison with the beam energy.

7.1.1 Three-body adiabdatic model

Leat uz consider a two-body projectile compeosed of core and valence clusters (p =
v+ ¢) incident on a target £. The three-body Schrodinger equation for the problem
is:

[TR + Hint(r) + Ua + g — E]‘I’I:[‘, R‘) =10, {7.1.1)

where the internal Hamiltonian of the projectile iz H;p = T + V.(r) such that
Hiney = eay defines for § = 0 the ground-state wave function ¢y and its energy
€p. We neglact the spin and intrinsic Hamiltonian of the target, and use the coordi-
nates (r, K} describing the relative motion betwesn ¢4 v and p 4- £ respectively, as
shown in Fig. 7.1. The full three-body scattering wave function can be expanded
as

T = go(t)xalB) + > il (R}, (7.12)
i=0
where the first term s the elastic compoenent, and the others describe the projectils
Inelastic and breakup states. Using this In Bq. (7.1.1), we obtain

[Tr + €0 + Ust + Upe — E]do(r)xo( )+

> Fr+ e+ Un + U — Elulr)e(R) = 0. (7.1.3)
i=0
We now assume that the relative metion of the projectile coordinate r iz slow
compared to the metion of the projectile relative to the target p 4+ £ (coordinate R,
which Is to say that |g — ep| < £. Under this assumption, Hine T &= epl, so0 the
encitation energies of the projectile can be replaced by a constant p by comparizon
to £. Thiz implies that, to a good approximation,

(T +Us+ U — (B — ) )P(e, R) = 0., (7.1.4)
The adiabatic medel consists in exactly solving the equation
(T + Us + Ut — (B — e)) 0= (r,R) =0, (7.1.5)

with the sarme incident boundary conditions, so that ©(r, B) == ©5%(r, R) at least
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for r smaller than the size of the projectile. The adiabatic wave function is also a
supsrposition of elastic and breakup channels,

(e, R) = go(e)xE (R} + > delehd¥ (R, (7.1.6)
i=0
for sorne new ‘adiabatic’ radial functions %52 (R.). The scattering boundary condi-
tions for incident momentum By are that for B > F, the adiabatic wave function
contains the Incoming elastic channel ¢y (r)x Ky, R) (of Bq. (3.1.72)), plus all
outgoing waves.

The Important advantage of the adiabatic medel is that in Eq. (7.1.5) the value
of r appears only parametrically (without ¢ derivatives), so the solutions for each
value of r can be cbtalned independently of those for other r values. This is the
general form of the adiabatic equation, so we do neot use Bq. (7.1.6) to find the
solution, but solve a separate coupled-channels problem for each value of r. We
therefore find adiabatic partial-wave functions }(ifff; Lol 4t 1) satisfying

[T (R) — (B — eo)|xtoon e (Rir) =

— S ULVt + U [( L8V T3 segue ([ Rir), (T1T)
Ligit

for each separate v, with the usual boundary conditions at £ = Fn of
Xi"f";f.afn(Ri 'J":J - FL"I:KDRJEEJE'IEL"L + Tifff;Lfn(T)HEf(KﬂR) )

so the T-matrx element depends on the parameter v
The complete wave function in terms of these wave funetions is [1]

dar
VE 6B =— > 3 (LM, fomo| M) (KM, #m| T M)
0 JM LM LA em

; J.' I Hir Lot ! &
L wi(r)}}?m@wwyg (R (87 (o), (7.1.9

where wg, () 1s the radlal ground-state wave function of the projectile (neglecting
all intrinsic spins as well as the target spin). The elastic scattering amplitude can
be obtained from T(r) by averaging it over the ground-state density fug, (r)|*:

fi:mn(K) = fc(ﬂ)‘l‘i{—ﬂ— Z {L!M!,fnmlJﬁln}{LD, EDMDlJ%}Ei(JLf{ﬂ}+JLI:ﬂ}}
LL'J
< V)Y R [ o funs) Thazalr), (110

with |K| = Kp and Ky in the +Z direction, where we have added a point Coulomb
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Fig 7.1. Coordinates for adiabatic models.

contribution as in subsection 3.1.2. The adiabatic model] includes the effects of
breakup intermediate states on elastic scattering.

7.1.2 The Johnson and Saper poteniial for transfer reactions

Given the small binding energy of the deuteren, in (d,p) reactions it iz likely that
deuteron breakmp is an intermediate step in transfer processes. An adlabatic pre-
scription has been developed for (d p) reactions by Johnson and Soper [2], wherebry
deuteron breakup is inclnded in a simple way. The exact post-form T matrix for a
transfer cutgeing channel, found from the two-potential Eq. (3.3.51) applied with
the post transfer interaction of Bq. (4.5.4), iz

)
Ty =— Tir, R 7111
fi ﬁ?-waf P |Vi [T(r, ) { )
where T(r, F) iz the exact wave function for the deuteron-target systerm, ¢y Is
a neutron bound state, and 4f; is a proton exit wave function. For the deutsron,
the dominating termn in the interaction Vg is ¥ (r), the neutron—proton binding
potential, which has a short range of gog ~ 1 or 24m.

In DWEBA, the wave function T iz approximated by an elastic compeonent
dolr)xol K}, with ¢olr) being the deunteron ground state, which means that the
breakup compenents of the wave function are neglected except for thelr influence
o Xpl ). This influence appears through the optical potentials, since these are
determined from fitting the alastic scattering cross section. In transfer reactions,
howavear, the g 1z used around the surface region and sometimes in the interior of
the nucleus, whereas the elastic scattering for the fit 1s a purely asymptetic prop-
arty. It 1s thus not clear whether Uopy from fitting elastic scattering can characterize
Ko F) in the region where it iz needed for transfer reactions.

The important realization by Technson and Seper [2] was that, for deuteron trans-
fer reactions, the wave function T(r, K) iz only required in the specific region
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where v % ot where r Iz smaller than the range of the potential Foran # = 0
deuteron bound in the limit of a zero-range potential Vo, we thus only need v = 0,
a part which Iz very sasily obtalned in the adlabatic meodel. Forr = O, we simply
solve Bq. (7.1.5) for that value of the parameter r:

(TR + Ua+ U — (B— a)) 00, R) =0, (7.1.12)

For this r value, the proton- and neutron-target potentials are evalnated at the same
position K. sothe above aquation is equivalent to

(Tr+ Uad(R) — (£ — eg))%(R) =0, (7.1.13)
where we have an effective ‘Tohnson-Soper’ potential
Ta( B) = Ua( B) + Up( H) (7.1l
A new ‘adlabatic scattering wave function’ ¥(R) defined by
#(0)%(R) = 2*(0, R) (7.1.15)

therefore includes contributions from all the breakup componants, as in the expan-
slon of Bq. (7.1.6).

Mote that the new distorting optical potential g 1z just the sum of the nentron-
target and proton-target optical potentials evaluated at the same point. This is called
the adiahatic or Johnson-Seper potential. It no longer fits the elastic scattering, but
iz intended to produce a distorted wave that Includes deuteron brealmp effects In
the region of configuration space where transfer takes place. In many applications,
the adiabatic optical potential improves the description of the transfer angular dis-
tribution, whether using the zero-range or the finite-range transfer Interactions.

A finite-range version of the adiabatic meodel was developed by Johnson and
Tandy [3], who obtain an averaged adiabatic potential by folding with weight factor
Vgl ) [ug,(r)|¥. For practical purposes, we can also use simplified prescriptions
(=g [4])-

In order for the adiabatic appresimation to be accurate, the beam energy should
be well above the typical range of ¢ for deuteron excitation into the continuum,
which for nuclear brealmp Iz up to g; = 10 MV, Thus, we expect this prescription
to be adequate for beam energles above £y 3 20 MeV.

7.1.3 The Johnson pecial three-body model

The three-body wave function T (r, R of Bq. (7.1.5) satisfies the boundary con-
dition of an incoming plane wave ¢o(r)e'®o R plus cutgoing spherical waves.
Johnsen [5] showed that a further simplification iz possible when the target-valence
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Interaction is negligible (77, = 0). This is typically the case for neutron halo sys-
terns: exactly so for Coulormb breakup, and approximately for nuclear breakup.
The equation to be solved becomes a single-potential equation,

I
[— %vi + V(B — (£ - e.:)]@?zu(r, R) =0, (7.1.16)

with R = R 4+ my fmpr. We can exactly solve this one-potential equation, if we
transform the radial variable from R to that appearing in the potential, namely R,
and correct the position shift with an expenential facter as in

T (6, R) = gy (e)e"™/ ™ Koty (R, (7.1.17)

to obtain an equation for x e (B

hE
[_ Evi"'gf—‘*(ﬂf) —(E—EDJ]XKD(RcJ =0 (7.1.18)

The adiabatic wave function of Bq. (7.1.17) satisfies by construction the boundary
conditions, and the distorted waves y g (B describe the scattering of a peint-
like projectile with an Interaction I/, with the target. Note the Important fact that
Eq. (7.1.18) has a kinetic energy operator expressed in terms of the core-target
coordinate K., but instead of containing the reduced mass for just the ¢ + £ sys-
temn, it confains the reduced mass for the full projectile with the target, u, =

g /(g + )t
The exact elastic-scattering transition amplimdes is ghven by

TS (K') = (do(r)e™ 7 |Ualv=" (5, R)). (7.1.19)
but in the special medal, D=5ty R is replaced by Eq. (7.1.17), so

T (K') = (po(r) ™™ Fee™/ K0 | [xge, (Fie) o eyt ™o/ me Ko ),
(7.1.20)

The Integrals over R, and r are independent, so we can define a form factor de-
pendent on @ = K’ — K as the Foutler transform of the ground-state density (zot
wave function):

FlQ) = f &r|go ()| P e/ LT, (7.L.21)
This multiplies a T -only scattering transition amplitnde

TE™ = (5 R U [x o Rl (7.1.22)

! Thig is distinct from the impulse multiple scattering formmlatiom [5] whemr pee would be wed imbead. It has
been shown [ 7] that both adiabatic and impules mmltiple scattering predict the same result io the high eneggy
fimmit.
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Fig. 7.2, Results from [S] for the Johnson special model elastic scattering of 1'Be on 1202
at 49.3 MeWViu: the dashed line shows the point projectile with ®Be—12C optical potential,
the dot-dashed shows the results using the folded potential, the zolid line iz the result of the
special model and is compared to the exact adiabatic prediction of BEq. (7.1.10), the filled
circles. Reprinted with permizsion from R C. Johnzon ef al, Phys Rew Lett 79 (1997)
2771, Copyright (1997 by the American Phyzical Society,

to cbtain the final transition amplitnde
T = Flg)TE™. (7.1.23)

This comvenient expression resembles that of electron elastic scattering in the plane-
wave Born approximation, but here all the breakup continunm is being taken into
account. The Johnson special model hasz been applied to the elastic scattering of
UBa on 12 C at 48.3 MaViu [3], giving the angnlar distribution of the cross section
shown in Fig. 7.2, Limitations of the model have been studiad in [7].

714 The adiabdatic wave function for breaknp

The adiabatic wave functions ‘IJE‘E?D(r, E.) and ‘IJEIED(r, F.) contain breaknp to all
ordars, but not to all distances. To obtain breakmp cross sections, it is Important to
rememmber that TEP is neot accurate when v — oo, since the bound state ¢o(r) In
Eq. (7.1.17) forces 0% to zero. The breakmp amplitndes for final-state momenta
(Ko, ko, k) should rather be constructed by using the wave function in a post-form
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T-matrix integral, from the special model for example [8]:

TE (Ko, ko, ko) = (1 (Re)e™ Be 1D (£, R)). (7.1.24)

This Integral only uses the wave function at small v < gup distances, where o
is the radial range of the V. potential. Substituting Bq. (7.1.17) into Bq. (7.124),
and factorizing the integrals in v and H., wea obtain

T (Ko, Ky, ko) = (69 V() [0 (£)) (R B i (R,
(7.1.25)
where g, =k, — mwf'mpK,:,,with R, = SR, +rand 8. = m;/(my +mg).
The breakup transition matrix of Bg. (7.1.25) separates nicely the structure part
frommn the reaction part. The integrals {XE;:'(RCJE"*S“L"“"R" | Ko Be)) for Coulomb
breakup are called the bremsstralyng etegrals and have been evaluated in closed
form by Bawr [9]. The structure part, which is simply the Fourler transform of the
vartex function Vi.(rl¢o(r), can be evalnated from some good structure model.
Mote that although there are some similarities in the form of BEq. (7.1.25) and a
finite-range DWEA transition amplitnde, the adlabatic medel treats ¥, to all or-
ders, and not just to first order. Applications to deuteron breakup show that this
adiabatic medel has good predictive power [B].

7.1.5 The adiabatic wave function for transfers

The few-body adiabatic model has also been appli=d to transfer reactions [10]. We
consider in this section a cluster model with £ = ¢4 v, so the reaction p+ ¢ —
(p + ) + ¢ is called a pickup reaction.® Using now the prior form of the transfer
moatrix elemment, we have

Tt = (DiI=et 1y T — Ul Cae) i, (R ), (7.1.26)

where i, (F;) Is the distorted wave In the entrance channel for distorting potential
T7;. Asg the amplitnde in Bq. (7.1.26) Is exact, the result 1s independent of 7. If we
now choose I to be 07, and introduce on the right side the approximate adiabatic
wave function of the JTohnsen special medel satisfying

(Tr + Upe(Bpe) — (£ — €0)) Ui (vs Ri) = 0, (7.1.27)
the prior form for the transfer amplimde reduces to

T = (TP [T (e, Rl (7.1.28)

2 Thiz iz & ime reverzal of the (d,p) stripping reaction discimsed in zubsecton 7.1.2 where 8 nucleon i= ram-
fermed from the pmjectile onto the target, and # = ¢ + o i= the inital bownd state.
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Fig 73 Coordinates for adiabatic model of piclup reactions: prior and post form.

Expanding TF by Bq. (7.1.17), we cbtain a transition matrix element
Tonor = (L% Vo (Fac xR (Rpe )™/ ™507) . (7.129)

Cre big advantage of the form of Bq. (7.1.29) iz that the adiabatic wave fune-
tion iz only used for small rg,, where It works best. The next possible step,
to simplify Eq. (7.1.29) further, is to take the Johnson and Soper approach [2]:
pl-kract o XE:;:'(Rquﬁm(rpﬂj and the zero-range approximation for the interac-
tion: Vop(rp ) @pe (Cp) = Dgd(Ryp— R, ). We then obtain the transfer amplitude
SEL - i .
TERZ = Dy (B u(ruchxmo (£} ™/ ™ 5oy (7.130)

pricr

Cre can see directly from this expression that the model contains recoll effects as
well as breakup effect, and so goes well beyond DWBA.

7.2 Eikonal methods
721 The dkonal wave function

Eikeonal methods are based on the high-energy approximation which assumes the
projectile follows a straight-line trajectory. As the theory was originally developed
by Glauber [11], it iz often referred to as the Glauber model. We write the wave
function in cylindrical coordinates R = (r, 8, 2) = (b, ) (see Fig. 7.4) for a plane
wave along the beam direction chosen as £

T(R) = ¢*¢(b, 2) . (72.1)

The beam energy is & = A*k® /2u, and for high energies £ the modulating factor
@b, #) should be a slowly varying function of both variables. The full Schrédinger
equation written in cylindrical coordinates has a kinetic energy operator

ﬁz

- S
— " Z Rl
= o [vﬁ + 5'22] . (72.2)
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Fig 7.4 Coordinates for cikonal model.

Substituting the Bq. (7.2.1) ansatz into [Tk 4+ V(R)]T = £T, we cbtain

ez O s DD . Qi .
ilea ilea a2, ot iz,
o e V- V(R)E R =0, (72.3)

Ak

Meglacting second-order derivatives of &, we obtaln what is called the eikonal
equation:

S i

— =—-——ViR T24

az ﬁ'?-"p I: ){Ié! I:. ;I

with relative velocity vy = Ak /g This first-order differential equation has selu-

tions of tha form

B(b, z) = exp [—i?fs Vib, z’)dz’] . (T2.5)

Rg f—co

that satisfy the boundary coendition @b, —oo) = 1. The standard procedure is to
define a elkonal phase

1 2
xtb,2) =~z [ Vb7, (72.6
p Jfcao
so that the wave function can be written as
T(R) = glbatxlball (72.7)

The actual phase of the scattering wave function s thug aceumulated aleng a classi-
cal path, in this case a straight-line trajectory. If after the reaction these phases are
different along different parallel paths, then the wave front is tilted, and scattering
is obtained to non-zere anglas.

We have assumed the comvergence in Bq. (7.2.6) of the integral over the po-
tential Vb, z). While this iz the case for short-range interactions, the long-range
behavior of the Coulomb force needs special attention, and we obtain results [11]
by screening at some large rading aa. Then ¥ = X + X, where Xn Is given by
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the integral over the nuclear potential, and the Coulemb contribution . is caleu-
lated using a screening radins «. of atomic dimensions, so that results can still be
dccurate at very forward angles. This can be expanded in powers of b /g, and
the leading term for b > HAoow I x(b:) = ZmuInkb, — B In(2k;0.). Here
1= AL fra fﬁz k; 1z the elastic Sommerfeld parameter, where Z; and 2. are the
target and core charges, and o) the Coulemb radins as used in Eq. (4.1.2). The
last term in . only contributes a constant phase factor to all scattering amplimdes,
and iz not observable, so we need only use x.(6.) = 2y In kb

7.2.2 Eikendal elastic scattering
The scattering amplimde can be obtained by replacing the exact wave function with
the elkonal wave function in the plane-wave T-matrix integral

fér= _;ﬁ?-

de e B Ry RIDK, (R . (72.8)

We now decompose the position vector R into a component in the direction of the
Incident beam fi and ancther perpendicular to it, as B = zfi + b. Defining the
transferred momentum as g = Ky — K we find

H a
Fi8) =—ﬁfd%elqbfdze““wb, #) exp [—ﬁi%f_mwb, z’)dz’],
(72.9)
where & iz the angle between K and K.
H we assume that ¢ < K (typically valid for forward angle scattering), so
q e 0, then

fdz (b, &) exp [—ﬁ fs V(b,g’)dg’] = iR (eXB) 1)) (7210

7 oo

where x(b) = x(b, o) corresponds to the (total) elkonal phase. The scattering
amplitnde can then be simplified to

foy=-=2 f a6 2P (X() _ 1) 7211

This plans Integral can be converted to a one-dimensional integral over a cylindrical
Bessel function:

fig) = ? fﬂ b db Jo (2K bsm{e/2)) (ePE) — 1), (7.2.12)

This expression for the scattering amplitnde iz valid for small angle scattering. The
procedure then involves only two integrations, the first to obtain the eikonal phases,
and the second to obtaln the scattering amplimde. Further approximations can be
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Fig 7.5 Application [12] of the cikonal model to clastic scattering of ™ Be on 12C at
sevieldl beam energies (dotted lines). Companzon with the optical moedel (zolid Llines).
FReprinted with permiszion from I B, Brooke, J. 3 Al-Khalili and I A Tostevin, Phys
Rev C5911999) 1560, Copyright (1999 by the American Phyzical Society.

rmade for these phases, for exarnple the black-disk approximation where e%(F) = g
for b < Fn and e =1 for b = Ap, with Ry, the radius of the black disk.

Crverall, the elkonal method requires three conditions for its validity. The first 1s
that the characteristic wavelength of the projectile is small compared to the rangs
of the interaction Hp, which translates inte KpFfg 2 1. Thus, it 1s mestly useful
for nuclear-dominated processes. This small wavelength condition is also seen
in the WEB approximations presented in Sectlon 7.4, The second Is the high-
energy approximation, which means that the beam ensrgy should be much larger
than the depth of the interaction: £ 3 |V5|. This condition is somewhat relaxed
i absorptive optical potentials are used, and often one finds that & =~ |1p| still
provides good results. It has been successfully applied for beam energies as low as
70 MeaVA1 The third condition 1s the forward angle approximation, up to 107207
at rnost.

Finally we should note that

5k (b) = gix(?) (7.2.13)
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Fig 7.6, Coordinates for cikonal model of reactions involving two-body projectiles, in-
cluding the definition of warious impact parameters.

are 5-matrix type functions, like those introduced In Chapter 3, ¥ we map b = Lk
semniclassically. We can also calenlate required observables from these functions.
An example is shown in Fig. 7.5 for the elastic scattering of Be on #C at saveral
beam anergies.

7.2.3 Compasite-body scattering and the optical Hmit

In order to calculate elastic and inelastic processes of commposite objects with wave
functions T(r) over some internal coordinates r, the eikonal method above must
be combined with the previous adiabatic treatment for the internal metion of the
projectile. If we may assume that the excitation energies of the projectile are small
compared with the beam energy, then scattering can be caleulated separately for
each value of r az in BEq. (7.1.5), and the elastic composite scattering then found
by averaging each of these over the ground-state density |®(r)|* asin Bq. (7.1.10).
H the Ti(r) and T¢(r) are the initial and final projectile internal wave functions,
then the Inelastic scattering of composite systern would use the transition density
T3(r)Ti(r). The scattering amplitude for each configuration r is a direct gener-
alization from Eq. (7.2.11), so the general transition amplitnde in the few-body
cikonal methed is
HECE —% f d% AP (Q () [ XETE — 1 |0y(e)),  (T214)
with b being the impact parameter vector of the c.m. of the projectile and b, being
the projection of the internal coordinates v of the projectile. The coordinates for
a two-body projectile are shown in Figo 7.6, The equation reduces to the slastic
amplitnde when f = 4.
H the projectile is composed of w2 particles, there are 12 — 1 Internal coordinates,
g0 T;(r) = ylrq, b, ., Bp_q ). In the same way, the elkonal phases of Bq. (72.9)
becorme x(b — b} = 227 x(b — b.;). Putting these together and defining the
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S matrices for each single particle as
Si(by) = exilbel, (7.2.15)

where b; = b — b, we have the Glauber formula for composite projectiles,

F1:6) =—%fdzheiq'bf...fdrldrz...drn_l
Ds(ryy a1} [S1(b1) Salbn) — 1 Dy(ry, oy b)) . (T2.16)

This corresponds to a truncated multiple scattering expansion to the order of the
murnber of clusters [13]. Other multiple scattering frameworks can be usaed [14].
We can then define the w-body scattering S matrix from an initial state ¢ toa final
state f as
,5‘}“'.

T

(P} = (#1171 55 (by) [ Pe) - (7.2.17)

This scattering matrix contains correlations between the various patticles, since
the averaging over internal coordinates of the projectile occurs after the exponenti-
ation. By expanding the exponential of Bq. (7.2.15) for S,(b,) into a power series,
we see that it Includes all higher orders of the potential V" before averaging over the
projactile’s wave function. An application of this for 11Be on 12C and a compari-
son with the more exact adiabatic meodel can be found in [12] (see Fig. 7.7). Note
that this figure is very similar to Fig. 7.5, as the extra neutron dees not modify the
scattering pattern significantly: it enly introduces the form factor BEq. (7.1.21) to
progressively reduce the cross section for larger angles.

The optical limit of the Glanber theory consists of neglecting all these correla-
tions, so that instead of the full r2-body 5% (b), we average the eikonal phases over
the projectile wave function before taking the exponential:

Fa-(b) = exp ({‘Pflizxj-(b — bj.-)|®.?-,}). (7.2.18)

Mote that for elastic scattering, thiz equation can be expressed In terms of the
ground-state density as

FE(b) = exp <'1 > xs(b — by |®+,|?'> : (7.2.19)
=1

As ¥y relates to the fragment T matrix, this 1s often referred to as the £p method,
since it picks up only the first order of the Interaction mnltiplying the ground-state
density.
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Fig 77 YBe+ 0 clastic scattering at several beam energies [12]: adiabatic calcula-
tions [zolid lines) wersus the cikonal (dotted lines). Reprinted with permizzion from I B
Erooks,J. 3. Al-Khalili and I. A Toztevin, Plys. Kew © 59 (19997 1560, Copyright (1999
b the American Physical Society.

7.2.4 Eikonal cross rections

Cross ssctions in the Glauber model can be obtained directly from the scattering
amplitide o(8) = |f(8)|°. Based on the relationships introduced in Chapter 3, the
angla-integrated =lastic cross section 1=

ra = [ o - spm)F
— [ @ - @mLsb-biiedP . 7220
Bimilarly, the reaction cross section is
or= [ @ (1= N, S0 -bo)E), 722D

where, if the projectile has spin I, we should average over its m-states.

For the breakup cross section we consider the two-body projectile p = v + ¢,
for which the eikonal 8 matrix Is factored as Sop = S2(6:) 5 (5 ). If k 1s the mo-
mentum of the two fragments in the projectile frame, the amplimde to the breakup
continumm at i is the inelastic matrix element

1Ky iq.
full8) = =22 [ (D |5 O0m). (7222)
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Here, ®g,y, represents the ground state of the two-body projectile, and @y ¢ rep-
rasents the final breakup state, where m and m' are the angular momentum pro-
jections of the initial and final state respectively. If for example there 1z only one
bound state, we can use a completeness relation to obtain a closed form for the
total breakmp cross section. Specifically, we use

> fdk Pi it} (@bimt| =1 = 3 [Poen) (Toem] (7.2.23)

to obtaln

Oty = f &6 > ((Qome| 1S5 [*|Pom) St — |{Qome| 26/ Dom)[*) .

mnt

2L+1
(7.2.24)

The closure relation provides a simple form for the energy- and angnlar-integrated
breakup cross section, but deoes not give angular or energy distributions.

7.2.5 Siripping reactions

Stripping reactions are those where a valence part of the projectile iz removed
by a non-elastic reaction with the target, leaving the core of the projectile intact.
The constction of stripping cross sections 1s based on the probability concepts
associated with | 5|2, with the probability of non-elastic reactions being 1 — |5|.

Let us consider a reaction where the two-body projectile p = ¢ + v interacts
with the target so only ¢ survives, and « is absorbed by the target. Then |S.[° gives
the probability of the core surviving after the reaction, whareas 1 — |5, |¢ gives the
probability of v being abscrbed by the target non-elastically. The stripping cross
section can then be directly written as

1
oo = g1 | 9 L Oonl [P 18P)]l2om). 7229

The cross section for stripping processes of greater complexity can be constricted
baszed on the same idaas. These aikonal formnlae for inclusive cross sections are
vary useful for knock-out reactions [15, 18] (see Section 14.2).

73 TFirst-order semiclassical approximation

If the charge distributions of the two nuclel Involved in a reaction do not over-
lap at any time during the collision, and the reaction iz Coulemb deominated, then
we can assume that the projectile-target relathve motion takes place on a classical
Rutherford trajectory while treating the electromagnetic excitation of the projectile
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quantumn mechanically. Thess are the basic ideas behind the Alder and Winther
theory of Coulomb excitation [17, 18]

The cross ssction for the inelastic process from an initial state to a final state is
written as a product of the Rutherford elastic cross section and the probability for
making the transition to a specific final state:

o:(6) = TRum() Fp(6), (73.1)

where Fy; iz the probabllity for the transition ¢ — f between the two projectile
states. If FL(%) 1s the Coulemb trajectory, let W{E(£)) be the potential responsible
for the excitation. In first order, the probability is

P = |agl, (73.2)

where  aj = % f_ " e V(R ), (73.3)

and the transition frequency relates to the energy difference between the Initial
and final states: £/ — £ = Fw ;. Usually, the Coulomb interaction iz expanded in
rmltipelas, so the integration over the Coulomb orbitcan be simplifiad to Isclate all
dependence on the Coulomb orbitals. The transition amplitnde can thus be written
as:

ap =1y @} (), (73.4)
A

whers &';'a depends on the properties of the projectile, the charge of the target, and
the trajectory, as

SN zte

= (FIEC 2] (7.3.5)

Here we use the electric multipole operator of the Coulomb fleld A(A, )
(Bg. (4.7.21)), the distance of closest approach ., which athigh energies 1s equal to
the impact parameter, and the adiabaticity parameter £ = w gl /v, which governs
the kinernatic part of the amplitude f(£). Using the explicit expressions for the
Coulemb fields, it is possible to obtain analytic forms for ag [17, 18] The cross
sactions are calculated summing the contributions of all classical orbitals. Thers
15 also a relativistic version of the theory, which uses straight-line trajectories but
incIndes relativistic kinematics [19].

More recent formulations generalize Alder and Winther, to give excitation into
the continunm, which is breakup [21]. It 1s possible to relate the Coulomb disse-
clation cross section to the capture cross section, and for thiz reasen this theory is
still in frequent use: the topic is discussed further in Chapter 8 and Chapter 14,
An example of applying Coulomb disseciation to astrophysics is the study of the
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Fig. 7.8. B breakup on *%Pb at 254 McViu [20]: breakup yields as a function of cm.
scattering angle of the excited "B, Data arc compared to first-order semi-claszical pre-
dictions including E1+M1 (zolid line) and estimates of EZ (dotted line). Reprinted with
permizzion from M. Twaza ef al, Phys Rew Lett 83 (1999) 2910, Copyright (1999) by the
American Physical Society.

breakup of B on “*®Pb for extracting the "Be(p,7)*B direct capture cross section.
In Fig. 7.8 we show the comparison with the data of the first-order semiclassical
pradictions [20].

The Alder and Winther theory Is a first-order semiclassical theory, and therefore
should not be used in cases where mnltistep effects are important. The quantum
affects are restricted to the projectile excitation process, and in that sense 1-step
IWEA theory in Chapter B Iz more complete. Alder and Winther assume the
process 1s only Coulomb, vet, even in reactions where the nuclear component is
small, we cannot eliminate the possibility of nuclear-Coulomb interference [22]
ag there may be miclear diffraction to small scattering angles. It also assumes the
projectile is point-like, which for nuclel on the dripline is clearly not adequate.
Despite the many approximations, it iz often used for Coulomb excitation and for
Coulernb dissociation, as it provides a convenlent factorization of structure and
reaction, allowing for a simple, even if unreliable, extraction of B{&A).

Finally, it should be neoted that sermiclassical medels which solve the couplad-
channel time-dependent equations have been developad, and some include correc-
tions to the trajectory due to the nuclear interaction (e.g. [23, 24, 25]). Howevear,
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tine-dependant selutions of the Schidinger equations are cutside the scope of this
textbook.

7.4 WEKBE approximation

In many reactions close tothe Coulomb barrier, neither the adiabatic nor the elkonal
approximations can be made. Then it 1s commen to apply the WEEB approximation
[25, 27], which is based on the asmumption that the Interaction is slowly varying
over the typical wavelength of the projectile. This approximation was developed
simultanecusly by Wentzel, Kramers and Brillouin [28], thus the name WEB. Let
us consider applving the method [26] to the radial equation

dF HE+1)

S R U () = 0. (74.1)

Here we use the scaled two-body central potential T(r) = %%"V(fr)_ We now
change the variable of integration to r = &® /&, and let the radial wave function
take the form (omitting for simplicity the subscript £)

uglr) = ez, (74.2)

This form can only be assumed if the potential decreases faster than v ~! when
7 — oo and is less singular than =% at the origin. Given the physical limits
of r € [0,00], the new variable » € [—o0,c0]. Substiiting the variable and
Eq. (7.42) Into Eq. (7.4.1), we obtaln

d2
d—ﬁ + G z)w =0, (74.3)

where @%(z) = e™ (1T /&%) — (#+1)% and w(—o0) = 0. For very large positive
z, the function ©%(x) is positive, while for very large negative =, it is nagative.
There is thus at least one point g where @*(#n) = 0, the turning point.

As with the eikonal wave function, we consider further w(z) in terms of another
unknown function g(z) appearing in the phase:

w(z) = vﬁexp [:ti fz: q(z"jdz"] : (74.4)

Insarting Into Eq. (7.4.3), we have the radial WEE equation:
¢'(z) + R(z) - @%(z) =10 (74.5)

] 1 d2g 3 (dgh®

The WKB approximation consists In neglecting the derivative terms F{z). This
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is valid when |R(z)| <€ |@%x)|, or when the potential changes slowly over the
typical wavelength of the incident particle. As the potential increases, @%(z) in-
creases while R{z) does not. Therefore, in the strong coupling lirit (77 () 3 &%),
the WKB approximation becornes exact. For this reason it Iz useful in sub-barrier
reactions, such as radicactive decay and fusion. It can also be used for scattering,
although itz condition of validity is not as strict as for the eikonal method. Note
that in the WEKB method, the trajectorias are not restricted to straight lines.

The general solution of Eq. (7.4.5) under the approximation Rz) = 01z

_ A samy B dm
w(z) mel + me T > o,
w(z) = ﬁe@fﬂ z< @, (747

Here wehave introduced the phases Q(z) = fon @) 2’ and Qi) = S |@(2) Az
For @ =0 @y we already know that the wave function needs to be regular at the ori-
gin, so wl—oo) =0

Around the turning peint, none of the forms of Eq. (7.4.7) are valid. There are
mmany procedures for treating the turning peint. One such procedurs [29] assumes
a linear turning point: G%(z) = a(x — =) for = near =y, so Bq. (7.4.3) becomes

A
dxe

This can be solved exactly to obtain coefficients A and B in terms of I

—alr — zplw =0, (74.8)

A=-1d"*p, B =1""*p, (7 4.9)

— =0 : = .
Then, for & = xp we have w(z) = Ja@) i} [l—r + o Q(fjdm’] . Tha coefficient
D 1z obtained from the overall normalization condition.
Going back to the original radial wave function, the WEB solution iz

gfr) = 2D (%)msﬁn E +£ E}(w)dr’] , (7.4.10)

where U(r) = k% — U(r) — (#41/2)%/r%, and vo = ¢°/k is the radius of the
turning point.

In order to obtain the WKB phase shift, from which cross sections can be caleu-
lated, we note that T7(r) — k% for very large radii. Then the asymptotic form of
Eq. (7.4.10) iz glven by

ugl(r) — 2Dsm E + fm T(r) — k)dr' + k(r—ro)| . (7411
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Fg 7.9 Barrier azzociated with penetrability. Betwesn the outzide tuming point at #; and
the bartier at r,, only Coulomb and centrifugal bartiers are conzidersd.

Comparing with the asyrmptotic form of Bq. (3.1.42), sm [kr—#Z4d;], we obtain
the WKB phase shift

SWKB _ (g | %)"_gr — kry +fm( U(r) — k)dr, (7.4.12)

We can verify from this that the phase shift iz zero for zere interaction. From these
phase shifts, the WEKE elastic scattering has amplimde

FPEB(g) = % 3 (20 + 1) Pylees 8)d% T sim 5JKB, (7.4.13)
£=0

7.4.1 Conlomb penetration factors

It is very commoeon to use the WKB method to estimate the probability of radicac-
tive decay as well as the fusion penetration factor. If we consider the case of pro-
ton emission, the Coulomb interaction produces a barrier such that E_f(frj contains
two turning peints cotresponding to #;, and .., as portraved by v, and 15 In
Fig.7.9. The proton can tunnel through the barrier but the transmmission probability
iz proportional to the square of the attermation of the wave function through the
classically forbidden region:

Upl Tt ) [ fzmh ' x]

—— == - ) |d=t| . 7414
we(zm) S|/ (=] (7.4.14)
The penetrability normally includes the squared wave-function ratio as

u(o9) |1

EE (A rg) =krg
£ I: :J ﬂf('rn)

(7.4.15)
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where k& Iz the asymptotic wave number corresponding to energy &, The by, Is
a flux factor, Included so that the resulting penetrability can be used directly in
equations like Bq. (4.5.28).

For fusion reactions starting at large radli, we need the other exponential solution
that decays from #.. towards s, The fusion penetrability iz now

ug(ra) |

ug( 0]

PR B ) = krp

(7.4.16)

Because of time-reversal invariance, this (small) penetrability should be the same
ag that from Bq. (7.4.15) .

Hthe Coulomb interaction dorninates the process, the tunneling probability given
by these equations is called the Coulomb penetrability. In this case, the potential
barrier is the sum of Coulomb and centrifugal potentials: Vi(r) = ZaZ,effr +
F{P41) A% f(2ur®). If 7 Is located at or inside the barrier (see Fig. 7.9), the barrier
there willbe £g = £+ £ composad of the Coulomb bartier B = 24 Z, 0% fr,
and the centrifugal barrier £y = (#4185 /(2urE).

The penetrability can also be defined in terms of Coulomb wave functions as

_ kr,
)= EEkra) + Gilkr,)’

Fe B, rp (7417

an expression which we will meet again in Chapter 10. A WKB approximation for
the penetrability iz still very useful, however, and may in fact be used to find the
Coulemnb funetions themsalves when far inside the classical turning peint rp.

We conslder the escape process in detail, and therefore use the WKB forms
Eq. (7.47) to wrlte the wave at large separations that is puraly cutgoing:

ug(r B o) = A[E—W(r)]_% em{i@fr E-Vp(ridr). (7418

Inside the barrier, the wave function increases with decreasing r to

imfd -1 2u ™
uglr vy = A [Vylr)— B]™ 1 exp( Ff Ve(r)—Edr). (7419

Introducing Eqs. (7.4.18) and (7.4.19) Into Eq. (7.4.15) and noting that at Infinity
the potential goes to zero, we obtain

Py Byry) = &, [ME‘)_E] 3 - {_ggﬂf Wdﬂr} .

(7.4.20)
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In termns of the height of the barriars, this is

B E) = krp ELJ;,EE_QE
_ z
= % e—gt! (T4.21)

where the Gamow factor is introduced as

Ge = 24/ iff x/EGT” E“*’r” iy (7.422)

We first conslder the £ = 0 case becanss it is the simplast and gives the largest
penetrabilities. The Integrations can be parformed to give

0
f Eorafr — B dr o g — arcsin B/ Ec — B Ec(1 — EfEG).

We now expand in powers of £/ and keep only the first three terms. The
Gamow factor becomes

Qb 2B A 2 s BB
—dy R 1+ —] — )
Vo TV e Ve T T (Ec) (7423

When ¢ # 0 we can make another low-energy approximation, and assume that In
most of the range of the integration r, fr Iz small, so the centrifugal barrier never
dorninates. Then

ALt chrn 2 [ E_{'Tﬂf dr
gfmz‘,f f of — Edr +1,fﬁ?_f e e (1429

The first term corresponds to Go. We retain only the leading order part of the second
Integral and rewrite the penetration factor for £ < K. Using the Sommerfeld
parameters 7 = Z4Zye” /(Rug) for scattering energy £, and ¢ for energy B, we
have:

PA(E) = e =xp {—zw +8nc— %} . (7.425)

From this we can find the decay rate A of an excited state of the compound
muicleus. The decay rate relates to the lifetime 7 and the partial width I" through
A=1/r =T/, and iz the probability per unit time that particle = iz found at large
distances from A. From the WEB results,

ik
A= vhug(e) | = 2 Byl By fuelra) (7.4.26)

with the penetrability from EBq. (7.4.25). The asymptotic-velocity factors o are



Exercires 245

needad here to give the flux in terms of the particle densities from the wave fune-
tion square moduli. These v factors have the same energy dependence as krgp, so
the second expression above gives decay rates with an energy dependence from
tunneling exactly that of Fe( £, rp). Similar expressions for widths I' will appear
in Chapter 10,

The same penetrabilities can be used for fusion processes A+ — B+ 7, to
find the energy behavier of the capture cross section at astrophysical energles (-
keV), much below the Coulornb barrier, son 3 %o, In this case the factor ¢=%™
in Bq. (7.4.25) gives the greatest energy dependence in the penetrability. When in-
serted in formulae for cross sections such as Bq. (4.5.28) which have an incoming-
fux factor =% oo £71, we can justify using the formula o = S(£)e~ /K
to define the astrophysical S-factor S A7), which Is then expected to be relatively
constant at low energy (see Chapter 1 and Chapter 12).

This WKE estimate has bean traditionally applisd to one-particls emission (2i-
ther proton or e). It has also been applied to three-body decay in a three-body
model where an effective three-body potential creates the barrler that needs to be
penetrated [30].

Exercises

71 Conzider the clastic scattering of 1'Be on 12C at 493 MV within the Johnson
special model. Determine the form facter of Eq. (7.1.21) for Y Be and compare
with the rezults shewnin Fig 7.2

12 What iz the penetrability for the reaction *He(*He /1" Be assuming you can ne-
glect the centrifugal barrier? Estimate the error due to neglecting the centrifugal

barrier

A Prowve that the eikonal approximation zatizfies the optical theorem in the limit of
high energies.

74 Coulomb phase shifts y. can be obtained uzing a sereening radiuz o, of atomic

dimenszions in the Coulomb interaction, which becomes Vo, (A) = e~ 5= (R
Thiz ensures that results are still accurate at very forward angles. Expanding the
screened Coulomb potential in powers of &fa., prove that the leading term for
b Roggis (8 = 2y kb — 2nln(2kae.) with R oo, the Coulomb radius.
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Breakup

In =ience one fries to tell people, in zuch a way az to be underztood by sveryone,
something that no one ever kmew before. But in poetry, it's the exact opposite.

Faw! Dimc

Muclel close to the driplines have large brealmp cross sections. The breakup
mechanism connects a bound state of the projectile with its continuum states,
so the process Is rather similar to inelastic excitation, except that the final state Is
unbeound. If the target has a strong Coulomb field, then breaknp reactions measure
the electromagnetic response that populates scattering states. These can be relevant
for astrophysical processes either directly, in photo-disintegration, or in reverse,
for capture reactions. The excitation into the contimmm also allews the study of
resonances, and this is Impertant for structure studies because the understanding of
the spectra of unstable nuclei depends strongly on resonant properties. Because of
these many interests, it iz important to establish reliable medels for the description
of brealaip reactions. For simplicity we shall neglect target spin in this chapter. The
connections to astrophysics and miclear structure will be considered in Chapter 14,

In the simplest case, breakup will leave the target miclens in its ground state.
This iz callad elastic breakup (also called diffraction dissociation). Heowevear,
there are experiments that measure the inclusive reaction, and then inelastic
breakup (also referred to as stripping) can be an important contribution. Elas-
tic breakup of a two-body projectile can be modeled as a three body problem, and
thiz Iz the approach presented In sections 8.1 and B2, Later in subsection 8.3.2 we
discuss methods for inelastic breakup.

8.1 Three-body wave equations
§.1.1 Wave function companents

The breakup of a projectile p into a core + fragment (¢ 4+ ) due to an Interaction
with a target £ can be described in a three-body meodel. We now must deal with

247
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(1) (2) (3)

Fig 8.1. Jacobi coordinates, typically uzed in the three-body models.

three-body systems which have two-body bound states between (at least) one of
the pairs of bodies, i only because such a bound state Iz the initial state of a pro-
jectile whoss breakup cross sections we wish to caleulate. Three-body projectiles
will be examined in mere detall In Chapter 9, where the advantages of using Jacobi
coordinates will be explained. We describe our three-body (e + @) + £ system us-
ing one or more of the coordinates illustrated in Fig. 8.1, with conjugate momenta
and corresponding angnlar-momenta for each coordinate in the normmal manner.

Let the initial projectile p = 4 v bound state be qﬁgl} (1) in terms of the coordl-
nate rp in Fig. 8.1. The incident projectile in the beamn will therefore be described
by a componant c,i:,gl:'(rlj exp(1F; - Ry in the wave function @ (r,, R,). How-
aver, If there are bound states of the v 4+ ¢ o € 4 £ palrs, then the wave function
01 15 not suitable to describe themn, bacause they depend on the r; and r3 coot-
dinates respectively, and T4 {r;, R,) cannot be suitably factorized into products
of those bound states and spherical cutgoing waves. We therefore need to write the
full systemn wave function as a sum of components, so there can be a component
expressed in each of the Jacobi coordinate pairs,

3
=3 0, Ra) . (8.1.1)
n=1

Bach component 72 is thus a function of the vector connecting two of the particles
tn and the vector connecting the c.mm. of this pair to the third body R,. The three-
body Hamiltonian is

Hyp =T+ Ve + Vip + Vi, (8.1.2)

where the kinetic energy operators are T =7 = ﬂﬂ + TRn for any choice of
Jacobl coordinate sat w2
We may consider writing the three-body wave equation in the Schrddinger form
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a8
[Hzp — £]0 =0, (8.1.3)

but if there are partitions other than 2 = 1 with bound states, then the transfer chan-
nels still give an awicward complication. This is because sach of the T 1y, Ry)
containz not just the bound states, but alzo all the continuum states, and can hence
by itself completely represent the whole T: even the bound states in other par-
titionsz 72 # 1! The problem with Bq. (8.1.3) is that we have not decoupled the
bound-state compeonents in the asymptotic region: in an integral reformulation of
the differential equations, the problem can be delineated as the Green's function
net having a compact of conpected kewel [1]. Admittedly, the other bound states
M2 and ¢®) can only be partly described by any finite partial-wave sum of spheri-
cal harmenics of the (r1, Bi) coordinates, but since matching iz always performed
at a finite radius, even a small part means that the outgeing amplimde for ¢, in
componett (") will have an admixtire from cornponent ™)

§.1.2 Three-camponeni Faddeev equations

In order to have well-defined asymptetic behaviors, and to make sure that bound
states ™) only appear in the boundary conditions for wave-function component
D™ e, Ry ), Faddeev [1] proposed a variant of Bq. (8.1.3) that does have unarm-
biguous separations of the bound states at large distances.

The Faddeev equations consist of three equations coupling the three compeonents
in such a way that thelr sum iz the same as before,

(B—T— VM)@(U = VM(@“:‘ + 1;..(3]')
(B — Ty — V) D) = v,(0l® 4 ol
(B — T3 — V) D® = 1,(0) 4 plEhy, (8.1.4)

Components defined in this way are called Faddeev components. For finite-range
potentials, these equations become uncoupled as R, — oo with v, finite. In this
limit the right-hand sides for #° # n become zero, and hence each binding petantial
only influences one of the components T/, This gives a much better defined and
murnerically stable set of boundary conditions for the bound-state outgeing waves.

Asymptotically, each Faddeev component 72 thus containg contributions from
the bound states associated to that palr and from three-body breakup. Transfer
channels are confined to specific Faddeev compeonents, but breaknp Iz distributed
among the three components. BEach Faddeev compenent behaves asymptotically as

pin) Zqﬁ;”:'(rnjgﬂ;”:'(ﬁ_nj + breakup; when R, — oo, (8.1.5)

B
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whers qé;”} are bound states p of the corresponding subsystem (for =1 this cor-

responds to the bound states of ¢ + v). If = is the initial channel then 'gﬂlj.';”:'(Rn)
contalns an incident plane wave and the cutgeing spherical waves, otherwise 1t
only containg the latter.

The three-body problem can be therefore solved exactly within the Faddeev for-
rmalismn. This can be done In coordinate space with the appropriate boundary con-
ditions [1. 2], or in momentm space [3]. In both cases, specific techniques mmst
be usad to regularize the Coulomb diverganceas.

5.1.3 Reduction fo one Jacabi set

Work by Johnsen and Soper [4] showed that deuteron breakup was very important
to understand reactions invelving the denteron. In that work, a two-channel prob-
lem was solved where the deuteron contimium was represented by a single discrete
s-state. Later, developments by Rawitscher [3] and Austern [6, 7, 8] helped to in-
troduce a more realistic representation of the contimum. Thiz approach used only
the 12 = 1 wave-function compenent in which there iz a bound state (v + ¢), and so
avoided solving the Faddeev equations. Their method solved the wave equation

[Ha — E]12® ey, Ra) = 0. (8.1.6)

How i it possible to reduce the number of components in this way?

When only one palr of particles has bound states, there iz indeed no longer the
original metivation for having multiple componants. It should then be possible to
simnplify the set of Faddeev Eqs. (8.1.4) to an equation for a component written in
terms of only one JTacobl coordinate pair There may be only one partition with a
bound state by accident, for example in d + o scattering, but there iz another very
impeortant kind of breakup reactions where thiz also holds.

In projectils scattering athigh incident energies, the potentials Vo: and Vo should
be appropriate for v 4+ ¢ and ¢+ £ scattering at {on average) the beam velocity, and
most often these will be optical potentials, and so willhave imaginary components.
In this case, neither Vi nor Vo will support bound states, because thelr Imaginary
parts will simply “absorb’ such states in a short time, according to Bq. (3.1.1089).
When Vi and Vi are realistic optical potentials containing absorption, the wave
functions in the rearrangement channels decay exponentially in rp and g, and
should be describable with only low or moderate £, components. The ¥, potential
st be kept real, In order to support the initial projectile ground state.

In cases where the transfer channels are not important, or are inhibited by the
Imaginary potentials, the three-body wave equations may therefore be successfully
simnplified to Bg. (8.1.6). This component can be expanded in terms of the complete
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set of eigenstates of the internal Hamiltonian of the projectile ¢ + v as

7y
’I’Ei(fhﬁﬂ = Zﬁf’p(rﬂ’%ﬂp(ﬁ—ﬂ + f dk (1 ) (Rq). (8.1.7)

p=1

We will from now on use vy = rand By = R, as only the first Tacob compenent iz
necessary. The momentumn k betweean the Internal metion of ¢ + v 1s related to the
momentum B between the projectile and the targst through energy conservation:

REgRE O REEE

Ec.m + g = E = .
gju"i‘-lc gjt'f'{tlc:n‘,

(8.1.8)

This &' is the center of mass energy of the three-body systemr the sum of the
projectile-beamn center-of-mass energy £, and the (negative) projectile binding
anergy ep. The po- Is the reduced mass for @ + ¢ relative moetion, and Hineye 18 the
reduced mass of the projectile-target metion.

The projectile sigenstates @, (r) are sigensolutions of the Hamiltonlan Hy,, =
Tac(r) + Voo(r) for energles ep <0 0, and the continuum states @i(r) are the eigen-
solutions of the same Hamiltonian, but for scattering enargies e, = A%k% /Qpep. =
0. Beth kinds of elgenstates (p, &) have the standard angnlar momentim decomn-
position

Moo Bkl .
Pro)E) = - [[Y}(r) ® Xa]; ® x;ﬂ]I?M, (8.1.9)
where £ iz the orbital angular momentum of @ relative to e, 3(1.) 1s the spin of

the fragroent wic), and the total angular memenmm of the projectile is Ip with
projection A4, The contimium integral in Eq. (8.1.7) in partial-wave form is

dk ... — dk a8.1.10
foofus e

Assuming that the effective interaction betwean the core ¢ and fragment o is
central, the radial wave functions g yy(7) are solutions of the radial equation

S
[_z,mm (@‘ (Tz ))H’%c(’-")—f] Uy} =0, (811D

for both the bound states with e, « 0O that are exponentially decaying at large
distances, and alsothe continuum states with energy ey > Othat oscillate to infinity
according to Bq. (3.1.83).
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8.2 Continmnm Discretized Conpled Channel method

In Chapter 7 we presented three different methods that could be used to compute
breakup cbservables. The first involved using the adiabatic wave function contain-
ing the breakup channel in the exact T matrix with only a short range interaction in
the operator (subssction 7.1.4), mestly applicable at Intermediate to high energies.
The eikonal approximation can also be used to calculate brealmp as described In
subsection 7.2.4. Finally, the first-order semiclassical theory for Coulemb excita-
tion can also be used for Coulomb breakup, as discussed In Section 7.3, All these
three methods rely on different but very significant approximations. In this chapter
we lead up to a method that does not rely on such approscimations.

521 Continunm bns

For a practical method, the three-body wave equation of Eq. (8.1.6) iz too difficult
to solve if ituses the expansions of Eqs. (8.1.7) and (8.1.10), because these are over
a continuous variable k. It 1s more tractable to have a finite representation for the
contimmem, and there are three standard ways of generating this finite description:

(i) The first iz the mid-point method, which consists of taking directy a scattering
state g (¥) for a discrete =t p = po. .. pn of scattering energics such az ¢p =
€mint [p—polfie, where ey and eqin +( pr— po ) f e are respectively the minimum
and maximum excitation snergiss to be included in the model zpace.

(i) One can also use prewdostates, which are simply the eigenstates of the internal
Hamiltonian Hipp on zome comanient squars-integrable baziz, The baziz could be
harmenic ezcillator state: (as in the zhell model), tranzformead harmoenic ozcillators
[5], or a large set of Gaussians [10], amongst others. These paeudoztates decay to
zero at large diztances, and have no zimpls relation to the v 4+ ¢ scattering zolutions
tig (¥, but we may hope that they form a sufficiently complete zet in the reaction
Tegion.

(iii) Finally there is the corfinuum bin or average method, where the scattering wave
functions wg(r) are averaged over & to be made square-integrable. The remainder
of thiz zection explains this awerage method and itz applications.

The radial functions for the contimmm bing in the average method, 4pr), are a
supsrposition of the scattering eigenstates as

() = ﬁ/,m,f ga () (7) dk (2.1

for some welght function gg(%). The normalization constant 1s chosen as Ny =
fk?_i |ga( &) | dk to make the 4(r) form an orthoneormal set when all the (&g_1, p)
are non-overlapping contimium intervals. We now generalize the meaning of the
Index p to extend beyond bound states to also include the bin wave functions Lp(r)
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in given partial-wave channels and given contimmm intervals, so p = {ils7I.I;
I:'ic?i‘—ls 'ici‘i‘) }

The weight function deserves particular attention. Suppose we want an ampli-
tude for a cross section alk) = {we(r)|02r)), for some source term ((r). If we
insert a set of (approximately complete) bin functions

a(k) = {up(r)|0(r)) = 3 lna(r) p(r)) (Bp(r) () (82.2)
T
we now need (we(r)|[aplr)) the overlap of a bin wave function and a true scattering
wave function wy,(r). From Eq. (8.2.1) we see that the energy dependence of this
overlap iz strongly influenced by the welght function gp(k). We should therefore
chooss ggk) to reproduce some form of a(k) that we can predict In advance.

H the bin is net near a resenance, then the large-r behavior will be Important. In
this case, up(r) oo e8] s kr— 2 f24-84(k)), where dg(k) are the phase shifts of
the scattering states within the bin, so we would expect a(k) to behave az alk) =
e~ 1%k} iaim( ki — 8 /248, (k) [C2(r)). It iz easy to reproduce the most important
featiure of this dependence, the phase e~ ¢} by setting gy(k) = et} For res-
ornant states, by contrast, the mest important feature is the large enhancement of the
small-r wave functions in proportion to sin de(k). This resonant behavior of afk)
can be reproduced by including an additional factor in go(k) = e ™) g §y(k).

If the phase factor e~i%¥) is always Inclnded in g k), an advantage is that
the bin wave functions can be made real-valued. This iz because the boundary
conditions of Bq. (3.1.85) for wy(r) are

ugl(r) — & [cosd(k) Fplkr) 4 sin (k) Gelkr)] , (82.3)

where fp and Gy are the real regnlar and irregular partial-wave Coulemb functions,
and the exponential phase factors cancel.

At large distances the bin wave functions must decay to zero. The bin methed
has the advantage that the extent and detail of the discrete representation of the
continummm iz adjustable: the convergence with respect to thess adjustments will be
discussed later. To gain an idea of the spatial size of the bin wave functions, we
mmay caleulate thern analytically if the potential 15 zere In the £ = 0 partial wave.
In this case, we find

sm({kp—kp-1)7]

Tglr) o sinfkyr) - : (8.2.4)

az opposed to the pure oscillatory behavior smik,r) of uy(r). The 4,(r) be-
have asymptotically with an extra factor sm((kp—&p—1)7r) /7, which makes them
square Integrable. Just as In this average method, the psendostate metheds are also
based on square-integrable functions, however the mid-point methed does not give
square-integrable basis states.
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We replace uy(r) in Bq. (8.1.9) by 4,(r] to form a discrete set of contimium bin
states q?:p(r) where nowp = 0,. .. ¥ rangss over all the contimium bing as well as
the bound states. These bin states have average energies &, = ()| Hing [Bp(r))
that correspeond to wave mumbers .E:p near the mid-peint momentum (kp_14kp) /2.

§.2.2 CDCOC equations and couplings

This Contimmm Dscretized Coupled Channel (CTDCC) methed expands the pro-
jectile continuum in termns of the bins defined above. The method solves the
Schrodinger equation (8.1.9) for the first Tacebl component

(Hap — V0P (p R) = 0 (82.5)

in the model space defined by a discretized expansion

N
TP, R = 3 dulr)ea(RY, (8.2.6)

for a given choice of ¥ bins dafined by allthe p = {is7 LI (kp_1, kp) }, including
dlzo projectile bound states. The CDCC wave function, which uses only one JTacobi
set, therefore approximates the three-body asymptotic behavior (see Chapter &)
by a product of projectile-target two-body asymptotic forms. The uncertainties
associated with this approximation have been studied In[11].

The three-body Hamiltonian Bq. (8.1.2) can be separated inte the Internal Hamil-
tonian of the projectile and the relative motion between the projectile and the tar-
getr Hyyp, = TR + Hint + Tt + U, We need a real potential for the projectile,
whereas the fragment-target interactions will usnally be optical potentials and con-
tain absorption from channels not included explicitly in the model space, typically
excitations of the fragments and the targat (so are written ©7 instead of 7).

Multiplving BEq. (8.2.5) on the laft by the conjugate projectile wave functions,
and using the expansion of Eq. (8.2.6), we obtain coupled channel equations

> (e} | H — Ega(r) tha(R) = 0. (82.7)

Using the above definition of £, this can be rewritten as

[+ Vepl(B) = Exlttp(R) + >, Vip(Blp(R) =0, (828

7'
where £y = £ — &5 and Vp(R) = (@a0r)|Ths + Ut|dpe(r)). These equa-
tions couple the projectile ground state to itz contimium states by the Vi (R, and

also couple projectile states within the contimium, by what are called conrtinuem-
continuum couplings.
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In terms of the bin wave functions, the energy conservation of Eq. (8.1.8) re-
quires that
HEERE ﬁsz
P ot = 0 _ = £, (82.0)
gju'{ﬂc:n‘, gju'{ﬂc:lt

where I is the c.m. wave number of the projectile and &5 is the average excitation
energy in the corresponding bin state.

Let us consider the angular momenta Invelved In this three-body problem. A
projectile wave function ¢y, has the form of Bq. (8.1.9):

Bole) =300 ) @ 0 2] (8210

where @ig(r) are the radial bound-state wave functions or the continuum bins de-
fined by Bq. (8.2.1). Weuse a standard multipole decomposition of 4f,(R.):

Pp(R) = > i (RIYLR), (82.11)
L
where L iz the orbital angular momentum of the relative motion between the pro-
jectile and the target (we neglact the target spin). The final three-body wave fune-
tion carries tetal angular momentum and projection Jyop, My resulting from the
angular momentum coupling L @ I, We define a set of all quantum numbers
a = {p, L} = {IsjL.I;; (kp_1, k), L}, so that the CDCC partial wave channels
for each Jyp are indexed by o
[ e ( d® L{L+1)

i ) Vi) + - B o)

gju'{ﬂc:n‘,
+ 3RV (R (R) =0, (8212
ol Eot
The coupling potentials V,..(K) describe the coupling betwean the different
projectile relative-meotion states:

Vet (R) = {[p(0) VLR fon [T (Re) + U (Boo) [ (£) V2R )
B2.13)
where U, (R} and U, (R, ) are again the total (nuclear and Coulomby) interactions
between o £ and v, T respectivaly.

We need to consider carefully the properties of these coupling potentials. If we
had uged the mid-point method for the bins, the fact that the v 4+ ¢ and ¢ + ¢ inter-
actions depend on (K., R.) means the contimmm-continuum couplings would be
between two ttue scattering states, and the integrals in BEq. (8.2.13) would diverge.
Cf course this is not the case for ground state to contimmm couplings, as then the
ground-state exponential decay provides a natural cuteff. The bin wave functions
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4 defined by the average methed, however, as opposed to those defined by the
mmid-point methed, are square Integrable and thus aveld this divergence problem.
In this way, for COCC brealmp using the average method in the discretization of
the continuum, the coupling potentials can be treated similarly to standard Inelastic
couplings.

Using the average method for the discretization, the long-range behavior of thesa
coupling potentials iz determined by any fragment-target Coulomb interactions.
Using the multipele expansion of the Coulomb field it can be shown that, for cou-
plings between different bins, the asymptotic behavier of the dipeole component
is ~o1/FR® but all higher-order multipoles will fall off as ~1/R*. The diagonal
interaction for a bin is of ~1 /R for all multipolarities: see [12] for more detail

523 Calenlating differential crass sections

The procedurs in the CDCC method inveolves several steps:

(1) calculating the projectile wave functions (bound and scattering states) and the con-
tinuum bins;
(i} calculating the coupling potentials V[ F);
(iii) solwing thecoupled equations (8.2.12) to obtain the & matrices 9; and finally
[i+) constructing the observables, namely the crozs sections.

From the coupled-equations sclution we can calculate the (fwo-body) scattering
amplitndes for populating each bin state Iy M from initial state I, M. These am-
plimdes contain a sum over all partial waves, and are a function of the angle #(F )
of the c.ro of the excited projectile in the three-body c.m. frame:

_ 4 iy
Frene(Kp) = 3\ 2 3 (K0, BpM|TM) (K/M—M', EyM'|TM)
LLAT

1 = ’ —
x ep(ilorton]) o Sia(p) YE(Ko) Yol TV (Ky) . (8.2.19)

Here o7, and oz are the initial and final Coulomb phase shifts, and the 87,_(p')
are the partial-wave S matrices for exciting bin state p* with cm. wave number
F:. The differential cross sections of the c.m. of the bin brealmp states p of the
projectile, averaged over all orientations, are

do(p’y 1 = 2
Ay | 2L+l ﬁ; [Frerna ()] (®213)
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Fig 8.2 The model space uzed in [14] for CDCC calculations of the " Be breakup into
*He+*He. Figure courtesy of Neil Summers.

524 Madel space and convergence of the CDCC equation s

Convergence Is the important consideration when caleulating breakup observables
with the CDCC method. The expansion of the three-body wave function iz trun-
cated in angular mementum, both in the Internal metion of the projectile £, and
the relative metion of the projectile and the target Lo The coupling potentials
Eq. (82.13) are integrated In r up to some maximnm distance between fragments
Thin. we include only bins up to some maximnm relative energy €me. and the
CDCC equations are integrated up to FApee. The interactions Ua(Be) 4+ DBy
are expanded to a maximnm specified multipele order A, so we also have to con-
sider the multipole Hmit Ape. A detalled study on comvergence of the CDCC
method for deuteron breakup on ¥ Niat 80 MaV, including nuclear couplings only,
can be found in [13]. For Coulemb-dominated processes it may be necessary to go
out to much larger distances, typleally at least several hundred fm.

An optimal discretization of the continunm requires a consideration of the bin
murnber, the boundaries k;, the widths Ak; and the weights gp in forming the bins,
which may depend on the I configuration. In Fig. 8.2 we show an example of the
continuum discretization used to study the nuclear and Coulomb breakup of "Be
[14]. The discretization is uniform in mementim, and partial waves # < 3 are
Included. The maximnm included excitation energy of the projectile iz 20 MeV,
and particular attention was given to the resonant bin in the frp channel This
reaction can serve as an indirect measurement for *He(o, v) Be, part of the pp-
chain (see Chapter 1). Detalls of using indirect methods for astrophysics are given
in Chapter 14.

Last but net the least, the size of the model space needs to be checked for each
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Fig 83, Convergence for the angular distribution of "Be in the laboratory following the
breakup of #B on ¥Ni at 26 M<V, by the method of Section 8.2.6.

given obsarvable. Bxperience has shown that the less Integrated the cross ssction,
the larger the medel space needs to be to describe the same reaction. In Fig. 8.3,
we show the progressive comvergence of the angular distribution in the laboratory
of the "Be fragment after the breakup of ®B on *¥Ni at 26 MeV, as calculated by
the method of subsection 8.2.6. While a maxirmm excitation of the *B of 3 MeV
is sufficient to obtain comversed angular distributions of ®B in the center-of-mass
gystem [15], thiz 1s no longer true for the three-body cbservables, where e, S B

beV is necessary [16].

§.2.5 Relafion to DWEBA

The CDCC coupled equations of Bq. (8.2.12) may be solved either exactly using
the methods of subsection 63.2, or else approximately by Iteration. Starting with
#i~V(R) = 0, higher order can be iteratively determined by solving?

[Fr+ Vol R) — By (R) = — > Vaw 95 (R),  (82.16)
f- 1
forez = 0,1, .. .. The function 'gﬂlf}(Rj iz thus the alastic channel resulting from
the solution of
[Th + Vaa(R) — E.J¢@(R) = 0. (8.2.17)

The potential V. (R) iz called the bare potentizl. Subsections 6.3.3 and 6.3.4
discussed the comvergence of such iterative solutions.

! Mote that the supemeript (=) Dow refers to the order of the iteration and not the Faddesy component.
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Fig 8.4 Angulardistribution for the breakup of B on 5%Ni at 26 McVinthec.m [15]: the
full CDCC result (zolid line), and sucessive multi-step DWBA . Reprinted with permizzion
from F M. Munes and 1. J. Thompson, Phys Rew <59 (1999) 2652, Copyright (1999) by
the American Phyzical Society.

The S matrix §) of the wave functions ™) R) gives the cross section for
an nt-order DWBA that uses bare potentials (rather than optical potentials that
rproduce elastic scattering). These cmlti-step DWEA results will convergs to
the coupled-channels solution if the off-diagenal couplings are sufficiently small.
H they are large, the D'WBA series diverges, but then the infinite series may be
resumed by the method of Padé approximants (see page 207, or [15]). In Fig. 8.4
we show the cross section resulting from successive Iterations of Bq. (8.2.16) for
the breakup of *B on "®Mi at 26 MeV. This is a case where off-diagonal couplings
are strong and therefore Padé acceleration was required for convergence.

The umal DWEA uses optical potentials that reproduce elastic scattering in the
antrance and exit channels. If these are ngt(Rj and UZ [ [t) respectively, then the
DWEBA T matrix for the breakup process in prior form is

TERT P = (R pa(0) Ut + Ut — DS (R) o ()4 (R))
(95 (R Voo B) [tbo (R)) (8.2.18)

where we abbreviate Voo (R) = (p(r) |V + Ug — UL |o(r)), and where the
initial and final distorted waves are found by selving

[TR + Ugf:ut(R) - Ea]iaa(R‘) = D:
[Tk + UL (R) — Bolo(R) = 0, (8.2.19)

We usually approximate Ug (R) = Ub(R) = Uope(R) when only the elastic
channel with the projectile In the ground state can be meamred.
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The Eq. (8.2.18) has another form when using only the bare potential for the exit
channel:

TP = Gl RV (B R, 8220

where the bare wave functions 'E»-Eic_B}P(R‘) are solutions of a decoupled equation
from the CDCC set:

[T + Vaa(R) — B8 2p(R) = 0. (8.2.21)

The one-step solution of the CDCC equation (Bq. (8.2.16) for n = 1) corre-
sponds to taking the bare interaction as the distorting potential in beth the entrance
and exit channels:

T = (e (R) Vo B (). (8:222)
The exact solution Iz given by
T = ':'i{’i ap (R} [Uot + Ust — Vaa (B[22, R)). (8.2.23)

The CDCC method replaces the exact wave function by that of Bq. (8.2.5) so

TSP = (65 A (R) Bl [Uet + Ut — Ve (B)| Y dur(Eipe( R} (8:2.24)

The first term of Bq. (8.2.24) foro’ = 01 TPIMBP D% Then the various differ-

Tpnﬂ' DW TCD oo

ances betweean can be separated:

CDoo price IV Choo lztep
TEDPeS _ = (TCPCC _ plstep)

f=.1]
+ I:Tlstep TE:II:‘—DW)
(TP T w22y

The first term in brackets represents moulti-step effects, the second the effect of
distortion in the entrance channel and finally, in the third, the distortion In the exit
channel.

The effect of breaknp in the elastic channel can be understood as a dynamic
polarization potential: that potential which, when combined with the bare potantial,
rproduces the elastic scattering amplimdes. Polarization potentials provide a very
approximate way of understanding the effect of additional channels on the elastic
channel, and are discussed fiwther in subsection 11.52.

526 Three-bady observables

To predict the angular and energy distributions of fragments after breakup, such
as shown in Fig. 8.3, we need to unde the averaging that generated the binz. To
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calculate three-body observables for final state momenta k and K, therefore, we
rewrite the T matrix from the CDCC method of Bq. (8.2.24) as

Tyone(k, K) = (30 (1) X B0 (e, RO (6, R)) . (8226)

Here ¢y ,; Is the o4 v exact final state and UV = Uy + Um. Next wa insert the
complete set of bin states to obtain

Tooe(l K) = 37 (80 104 (@M B R [0 (r, R [T pe(r, R)), (8:227)
B M

where the sum is over all bins p which contain wave number & so the overlap is
non-zero. The first factor in Bq. (8.2.27) is

) EE
Flek) = 2T T 2 (- (e 5ol el M) 10 ),

(B.2.28)
Here ,(k) = &5(k) + op(k) is the sum of the nuclear and Coulomb phase shifts
for ¢ + @ scattaring at ralative wave nuober k.
The transition matrix elements appearing inthe second term in Bq. (8.2.27),

-~ Ky H CDoC
Tind(Kp) = (&' ¢S MU RN (RR)), (8229
relate to the rmatrix elements Fagps(K,) obtained from the coupled channels so-
lution through:
it
Tl (Kp) = — 50 Faerne () (8.2.30)
Moyt K

Through Eq. (8.2.30), the inelastic amplitndes are converted to those of the T ma-
trlx by removal of thelr two-body phase space factors. In this way, we find the
agymptotic amplitndes for plane-wave final states exp(lk - ).

Equation (8.2.15) can therefore be written interms of 7;%.,(K,), sothe angular
distribution in the center-of-mass frame for excitation of each bin state p, averagad
over all projecitle orientations, is

dG’I:p:I 1 Moyt Z Kp | - z
- 223 T )| 8.2.31
dig 20+ [mrﬁ?-] Ky ﬂ%f e (Kz) (8230

Inzerting Bq. (82.28) and Eq. (8.2.29) Into Bq. (8.2.27), we get for the three-
body breakup T matrix

pIEEE:
Ty el ke, K Z( low, saljm) (g, Lyl ALy

x expliba(k)]¥F (K) golk) Tarne(p K) . (8.2.32)
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We usually express scattering amplimdes in a coordinate system with the x-axis
in the plane of Ky and K, such that the azimuthal angle ¢g, of K is zero. For
calculating three-body observables, howsever, the x-coordinate axis should rather
be defined such that the coordinate system iz fixed relative to the detectors in the
laboratory. In that case, the amplitudes must be multiplied by exp(i[M — M |¢x ),
where g isthe azimuthal angle of B, with respect to the new x-axis.

The triple-differential cross ssctions for brealmip can be cbtained from the three-
body amplitudes of BEq. (8.2.32). For example, let us consider a case where both
fragment angles are detected, and the energy of the core ¢ Iz measured. Then the
triple-differential cross section iz

d*c gqr#{ﬂc}t 1 2
= Tl K .00
d0dN,dE. | HKy (2L+1) ;:J ot (K KO e ( By ey )y

(8.2.33)
where the three-body phase-space factor ppe( £, (e, £2p) [17] Iz the density of
states per unit core-particle energy, for detection at solid angles {2, and 0. It
can be derlved by evaluating the integral

opal By Doy T ) AELAD AN, =
dede3k¢.d3k¢ 8 P—Fko—Fiky — Aks) 6 B— Ba— By — By, (8.2.34)

where £ Iz the avallable kinetic energy. The core, valence particle and the target
mementa in the final state are fk., Ak, and flk,, and P = AR iz the total
momentum of the systern. The mornenta can be evaluated either in the c.m frame
or the laboratory frame, and relate to k and K through

Tla+1iy TMla M
K=k +k.— —— K k= — . (8235
ko + ke Mgty f.rnc-l-':rnﬂk'll f.rnc-l-ﬂrr?,ﬂkC ¢ )
The resulting phase-space density is
Ty fikafik 7l
Ppa( Fey ey Ty = ikl ¢ (8.2.36)

(2rA)E oy oy g (ke Kpy) by fRE

H an experiment only detects the core, for example, we need to integrate over
{1,. Furthermore, as detectors always have a solid-angle coverage AD, # 0 with

an efficiency profile 2(11.), the prediction to be compared with experiment would
ba

d'o Y _ lf a0 4 el fdﬂ d'o §.2.37
0.dB.) ~ At Jag, e 70 R RIET S

Here, it would be most convenlent to chooss the x—z plane to be that defined by
the beamn and the core-particle detector.
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8.3 Other breakup mweasnres and methods
5.3.1 Momentum distribution:

When a nucleus Is broken into two or mors pleces in a brealmp reaction, it is
common to measure the meomentum distributions of the fragroents. Usually, these
distributions are transformed into the rest frame of the initial nuclens, whether it
be a target or a projectile, and ither the longitudinal or transverse componants are
plotted.

The most accurate way of caleulating these momentum distributions is to cal-
culate the triple-differential cross sections according to Bg. (8.2.33), and then in-
tegrate over the angle of the unobserved particle, as well as over the unchserved
compenents of the observed particle. This gives the elastic brealmp (diffraction
disseciation) part of the cross section, as would be appropriate when the uncb-
served particle 1s definitely produced, even if neot registered. The lack of y-rays
from compound-nucleus decay may be taken to indicate elastic brealaip.

§.3.2 Inclusive measuremenis

An important component of observed Inclusive momentum distributions iz from
nelastic brealup (stripping, or brealmp-fusien) as described iIn subsection 7.2.5.
There, the other particle may well still be fused with the target in some complicatad
Inelastic process. This component cannet be caleulated by the CDCC breakup
method. There Is an approximate spectator expression suitable for high-energy
bearns, based on the elkonal approach of subsection 72.5, given by Hussein and
McVoy [18]. At the highest energies, the remults become similar to that of the Ser
ber modal [19], which calculates the momentum distribution directly as a Fourler
transform of the initial bound-state wave function.

The post-forrn DWEBA approach [20, 21] can also approximate the stripping
compenent for light-nuclenus breakup using a swface closure approximation, as
does the method of Udagawa et al [22].

§.3.3 Semiclassical and ime-dependent methods

The breaknp process can be medeled in some cases as an inelastic excitation of
the projectile while moving in a classical orbit, such that the excitation Inte the
continum Iz treated as a parturbation. This iz the well-known semiclassical modal
introduced by Alder and Winther that was briefly discussed in Section 7.3, Its
popularity is mainly due to the simple way in which it relates the structure of the
projectile (namely the dB(&FA) /dE) and the Coulomb disseciation cross section.
We leave a discussion of its application to Chapter 14, Non-perturbative time-
dependent methods, such as the time dependant Schrédinger equation (TDEE) [23]
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and the time-dependent Hartree-Fock (TDHF) [24] are beyond the scope of this
boole

§.3.4 Transfer to the continuum

The brealmp process can also be modeled as transfer to the continuum: this is
particularly useful to populate unbound states. An example are the measurements
of the states in *"Li through "Li(d,p) performed at REX-ISOLDE [25]. Several
carlier theories for transfer to the contimmm are based in the first-order DWEA for
transfer processes, such as the semiclassical methed of Brink and Bonaccorse [26],
or those with specific approximations for the final unbound state of interest (2.2
[27, 28, 29]). An obvicus improvemment of these approaches [30] Iz to calenlate the
transfer T moatrix by replacing the exit-channel wave function by the CDCC three-
body wave function expanded using the sscond Jacobi set of coordinates shown In
Fig. 8.1. The convergence of thiz method as well as its applicability iz still under
study.

Exercises

8.1 The breakup of B has been studied in a number of experiments in order to de-
termine the "Belp, ) reaction rate, of importance in the solar nevtrine problem
Conzider the breakup of ¥B on Pb at 82 McViu, The CDCC method provides a
theoretical framework in which to study this reaction. In thiz method, the " Betp
continuum iz sliced inte energy bins (there iz an exampls input in Appendix B}

(a) For £ = 0.2 MV, determine the bin wawe function and compare with the
corezponding pure scattering wave function.

(b} Perform a CDCC calculation of B—"Betp onPh at 82 MeViu and obtain
the angular diztributions.

{c) Estimate the uncertainty from the "Be optical potential and the proten
optical potential for thiz reaction.

(d) Determine the model space needed for comrergence for calculating the
total cross section for *B—"Be+p on Pb at 82 MeViu if charged particls
detectors were placed from 8., = 0.1-1.0 degrees.

(¢) Inthe conditions abowe, what would be the percentage of the nuclear con-
tribution to the total croz: section?

if) In many cazes, nuclear/Coulomb interference is important. If one were to
zubtract a nuclear contribution from the total cros: zection, what would be
the errorin the *Coulomb only’ crozs section due to interference?

(g) How would the energy distribution B, for the breatip "B—"Be+p on
Pb at 32 MV change if the p-wave rezonance were at 0.1 MeW.
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9
Three-body nuclel

One never notices what haz been done; one can only see what remains to be done.

Marie Curle

The direct reaction of a two-body projectile with a target constitutes a three-body
problem, as discussed in the previeus chapter. The next mest complicated group
of processes involve a three-body projectile, which with a target make a four-body
rraction problem. This group includes reactions where the projectile is a two-
mucleon hale nucleus, and in this chapter we present theories for the stmicture and
reactions of such nuclel. Firstwe introduce the topic of halo nuclei, then describe
three-body models for bound and scattering states. Finally we discuss four-body
reaction models within CWEA, the adiabatic approximation and the eikonal
approximation, and conclude by looking at four-body CDCC.

9.1 Definitions of halo and deeply bound states

Stable nuclel are characterized by large binding energles and extremely long life-
tirnes. Figure 9.1 shows the miclear chart for light nuclel. As we add protons or
neutrons tothe system, and move away from the valley of stability (black squares In
Fig. 5.1}, the binding energy of the valence nucleons becomes smaller and smmaller
until eventmally the systemn can ne longer bind. Arcund the nuclear dripline, we fre-
quently find exotic structires called Aale nuclel [1]. The halo phencmenon comes
from a significant decoupling of the valence nucleon (or nucleons) from the re-
maining nucleens, which form a core. The valence nucleon(s) reside mestly In
the classically forbidden region (£ = V) and contribute to a mmch-inereased rms
rading of the hale micleus. The phenomenon is hindered by Coulomb and centrifu-
gal barriers, so one-neutron hales appear typically when filling the 5- or p-wave
shells. Examples of one-neutron halos are ' Be and *C. The first evidence for the
existence ofhalo miclel was the very large Increase in radii extracted from total re-

266



21 Definitions of hale and deeply bound states 267

action cross sections [2], when for example adding only one neutron from Be to
UBe Later experiments revealed mommentum distributions following the breakup
of halo systems that are very narrow compared to the stable miclear neighbors.
This, through Helsenberg's uncertainty principle, impliss a strong delocalization
in space.

Borromean muclel are a particular type of two-micleon halo systems. If two va-
lence nucleons are leosely bound and net strongly coupled te the core, and have
an rms radius much larger than that of the core, then the nucleus is a good three-
body hale nucleus. I, in addition, nene of itz palrs form bound states, the system
iz zaid to be Borromean [1]. In Fig. 9.2 we show one of the prime examples of
a Borromean muclens: 111 is bound by only 0.3 MeV relative to the three-body
threshald, but neither the dineutron n—n nor 711 are bound. We need all three bod-
les to tie such a system together. Although less commen, Borromean two-proton
halo ruclei such as 1"Ne can also exist. The Borromean nuclel are represented by
squares with the Borromean rings In Fig. 9.1.

This chapter deals with the theory of Borromean three-body systems: those
where there are no two-body bound states. The previcus Chapter 8 examined
breakup theory when there are two-body bound states present. We saw that the
presance of bound states In one or more partitions led to complications, and often
the need to solve Faddesvy equations, but these complications de neot arize in the
Eorromean case. Here we discuss three-body bound states and three-body contin-
uurmn states, as both are important in reactions.

Froton Mumber

Meutran Mumber

.l' p/n - Borromesan a .l'lE' p'n- Hako

Fig 9.1. The chart of light nuclides up to & = 16, indicating halo and Borromean phe-
normena at the driplines. Fgure courtesy of hare Havzmann.
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&% ©

O

Fig. 9.2, Three body model for ' Li based on realistic relativwe sizes of the Li core and
the two neutrons of the halo.

0.2 Three-body models for bound states

We now formmlate the three-body problem for bound states of coredtndn systems
using the Schrédinger equation with the hyperspherical harmonics method. The
hyperspherical method was first introduced in atomic physics [3], and often used
beth in atemic and melecular physics [4]. It was brought into nuclear physics In
1959 by Dielves [5] for developing a general nuclear reaction theory. The formalism
iz also introduced forhaleo nuclel in the review [1].

A ‘good’ hale nucleus will have its valence nucleons far from the core, and iz
hence unlikely to excite the core to higher-energy states. Strictly speaking, howr-
aver, we should allow for this possibility, as in some nucled thiz iz an important
affect [6, 7, 8], We therefore carry forward the sum over core states I, while as-
suming that ene, or at most two, core states are necessary in the summation in
practice. We will not Inclnds isospin dependence since the Interactions to be used
have a fixed isospin

The kinetic energy operator for the relative moetion in a three-body systern, after
extracting the center of mass motion, will depend on just twe coordinates. One
possible pair are the ‘physical’ neutron-core coordinates rzp and ra; In Fig. 9.3,
where bodies 1 and 2 are the neutrons %2, and bedy 3 the core ¢ In that coordinate
systemn the kinetic energy is

z z z
2231 a 22132 Ve = %vﬁi Vra s &2l
where the reduced masses are defined in the usual way py; = mmy/(me+rmy).
However, we would mnch prefer Jacob! coondinates in which the coordinates can
be uncoupled, without any dot-product, so the free-fleld solution can be factorized
into a product of functions of the two cordinates. Because of the dot-product term

T=-

i
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1 r=t,, 2

Fig 93 Coordinates in whichthe physical two-body interactions are defined, for nucleons
1 and 2, and cor= 3.

above, the (rap, rzp) are not Jacob coordinates. A better cholce iz (1, 5) repre-
santed in Fig. 9.3 because now the kinetic energy s simply

T=Tr+Ti=- (92.2)

where (g Is the reduced mass in the 142 system, and pyqz)z s the reduced mass
In the (1243 system.

The full Hamiltenian contains these two kinetic energy operators, the intrinsic
Hamiltonians of the three bodies, and the three possible two-body Interactions. In
the system shown in Fig. 9.3, the Hamiltonian iz

Hy, = Tr' + Ts + Hcme(‘f) + Vm(rIEJ + Vm(rZEJ + Vﬂﬂ(r)' (82.3)

The distances between sach neutron and the core, rz1 and rsz, can be expressed
in terms of the JTacobian coordinates (r, s) where © = riz Is the distance between
the two neutrons and s = rypy is the distance between the core and the nentrons’
cantar-of-rnase:

Fs1 =5+%r and r32=5—%r . (024
The intrinzic Hamiltonian of the core determines a set of eigenstates & and

elgenenergias €7 according to

Hcme(‘f) qﬁf(‘f) = Er qﬁf(‘f) 1 (925)

where £ represents the Internal core degrees of freedom. The procedure consists
then of summing a product of a few core wave functions with their correspending
valence wave functions, T/M(£,r,s) = 37, [#7(£) ® 9{(r, 5)] sar, and, with this
ansatz, solving the Schriédingsr equation:

Hayp /™ = g o/M | (02.6)
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The valence wave function (¢, 5) contains the radial, angular and spin depen-
dence for the valence neutrons, and thus will contain further sums over additional
quanturn nurnbers. The meaning of & iz the energy of the three-body system rela-
tive to the brealmp threshold for all three bodies.

9.2.1 The hyperspherical caordinates

In order to facilitate the hyperspherical methed, we introduce scaled JTacobi coor-
dinates. If the three bodies have masses m;, and therefore ratios A; = myfm to
some unit mass w1, we devise sealed Jacobl coondinates (x,¥) In terms of which
the two kinetic energy terms have the same coefficlent of V2. From Bg. (9.2.2), we
sea that to gat

i i
g g ——v?' — —v?- (92.7)

T =— Ti_
2p1z " 2fpeE am am ¥

we nead

x=+/prfmre and ¥ =4 lans/ms. (92.8)

We now generalize this to any cyclic permutation of the labels 1, 2 and 3 of the
three bodies, to define (xg,¥¢) for & = 1, 2,3. The relative coordinates can be
generally defined in terms of the position of each bedy rq, rg, b3 as ry; = r; — 1y
We alzo Introduce the vector connecting the cm. of a given palr to the third body as
Fiigye = b5y — Fp- Wi Use an ‘odd man out’ netatien, so 20 refers to the separation
of particles 2 and 3, and have therefore the general definitions

A, (A A4,
VA4 P VeSy g A, e 029

where (ifk) are cyclic permutations of (123). The A; are dimensionless ratios, so
(3, ) are still lengths, while thelr scale is set by the unit mass m, commenly
taken as the nucleon mass, or otherwise | amn. The coordinates are all illustrated
in Fig. 9.4 for the two-neutron + core case, where each separation vector Is labeled
by its rescaled JTacobl coordinate.

H particles 1 and 2 are both nucleons of equal unit mass, the coordinate systems
(31, 1) and (xz,3¢) are essentially equivalent. The acaled coordinates are then
telated to the previous (r, s) Tacobi coordinates through

245 -
A 4+277

A A +1
1 = AE 1 C25 ¥1= m ['{23:'1 . (9.'2.].0)

Xz = ¥z =

S
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1 2 1 21 2
2 =
Fl 1 X2 Yz FE
3 3 3

Fig 9.4 Jacobi coordinates for the core+ 0 + 0 systerme the first two are usually referred
to az Y basziz, and the third az T basis.

The (xz,¥3:) 1s called the T-basls set, and both (x3,¥%1) and (xz, ¥z) are called
Y-basis sets, because of the shapes in Fig. 9.4,

The hyperspherical radius @ (also called “hyper-rading’) and hyperangles &; are
then defined by

GF=eftyl and 8 = arctan (5) . (9.2.11)
T

The hyper-radius, p® = =% + ¢Z, is the same for all = 1, 2,3, and this invariance
iz @ basic advantage offered by the hyperspherical coordinate system. The hyper-
angles #; = arctan(m; /), however, are different for the T and the two Y bases.
The hyperspherical transformation is essentially a transformation from Carteslan to
polar coordinates according to (#,%) = (psin 8, pcos §) plane,’ for 8 in the quad-
rant [0, 7/2]. The transformation is useful bacause the kinetic energy of Bg. (9.2.7)
now separates into a sum of p, #, % and F differential operators as

" Al 8 3 1 38 3
= | P = T |sm®fw_
Qm[pﬁap (p ap)er?sm?zaae(m aa)
L Ly

oismie  pfoos

- e] . (92.12)

Here the operators frz and f_ry are the angular mormenta asseciated with coordi-
nates % and ¥ respectively. Although the absolute values of » and ¢ no longer
coincide with the physical distances between the bodies of the system under study,
the hyper-radins o Is Invariant under translations, rotations and all peromtations,
and is directly related to the overall size of the nuclens. It iz proportional to the

! The defimition tan # = =y iz 1med mther than the mome natral 4= for puely hstorical masom.
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three-body mement of inertia as

3
ph=3 ) A, (:2.13)
i=1

whare o, are the distances of the threa bodies € from the center of mass of the whole
three-body system. For a c+n+n system, the rms radins of the three-bedy nucleus
FrmelcH141) relates to the rms rading of the core roa(c) and the mean square of
the hyper-radius {p*} through

As
A +2

frfms icHn+n) =

rhaele) + (%), (9.2.14)

A +2

where the mass of the core iz m. = Azm.

Cn the other hand, the kyperargles contain radial correlations, and are related to
the relative magnitndes of the respective pair of Tacobicoordinates. As anexample,
and thinking in the T basls, # = 0 means that the two neutrons are much closar to
zach other than to the core. The other extrerne happens if the two neutrons are far
from each other but the core 1z sitting in between, as then ¢ = /2. Note that the
value of & hag In itself wo Implications for either of the % or ¥ angles.

Any one of the scaled JTacobi sets (3, ) Is sufficlent to describe the system
so the development of formmalism for two-neutron hale nueclel will preferentially
use the Jacobian coordinates in the T-basis set, where & = 3. This is because
of the antisymmetrization of the wave function between the two neutrons: when
constructing the channels for the T basis the neutron antisymmetrization can be
accornmoedated by selecting only partial waves with I, + 54+ 7" = odd, where I Is
the relative orbital angnlar momentum betwean the two neutrons, and 5 and T are
the total spin and izospin of the two-neutron subsystem (see subsection 3.4.1). As
the isospin for the two-neutron subsystem is T = 1, the condition 1s equivalent to
b + 5 = even.

9.2.2 Hyperspherical expansions

The transforrnation from a Jacobian coordinate systemn to the hyperspherical coor-
dinate system Is

(x:}r: ':"-1:':"-2:I = I:T,y,}:’.,j:’, ':"-1:':"-2:I —* I:.IO! IEi‘:}r':p-:j‘hr: ':"-1:':"-2:I E(p: ﬂg.,ﬂ'l,ﬂ'g:],
(©2.15)
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and does not affect the angular and spin variables of the two neutrons. Note that
% = fand ¥ = &% We therefore expand on spherical harmonics for £ and & as
usual, using smims over angnlar-mormmentum quantum mimbers (i, {,) respectivaly.

Given orbital angular mormenta (i, ), the spin of the core I, and the spin of
the nentrons (o1, oz), we can write down the partial-wave expansion for the total
wave function, spacifying a coupling order such as

‘I"JM Z 'E.l!:'fs'?rl}(x:yj {([YI_I i YE.E.]E' i [Xa'i i Xa’g]S)j i '-'pf}JM
Lelyf84T
(9.2.14)
Here we have assumed, as anticipated, that we are using the T basis.
The two-dimensional vadial wave function 4z, ¢) can now be expanded in the
hyperspherical variables. We factorize the hyperangle and hyper-radial dependence
of the wave function by means of a discrete sum over a new Index K

JE'S j!'..F £EITT fnd
2 rys) = ZXK,-_IL( ox (8], (9217}

The 552 iz chosen here to cancel the p® factors in the first derfvative term in
Eq. (9.2.12). We further require that the new hyperangular functions goi”f‘r""(ﬁj are
eigenseolutions for some eigenvalue B of the hyperangular equation

18/ 2,9 lallz+1)  Hlly+l) | e Izl
-2 262 | _ _ 6] = — B
[s'm?- 26 59 (Sm aa) snfg  casip | R ) v *(0)

(0.2.18)

that are regular at = 0 and # = /2. The eigenvalues of this equation are B =
KE(K +4)for K =1, + [, 4+ 2n with integer » = 0,1, .. ., and the corresponding
aigenfunctions are

1
S2(6) = N=% (smé)=(cos )y BV icasg) | (9219)

whers Pi”“f 1/ {cos26) are JTacobi polynomials. The Ni-;';"" are normalization

factors so that the functions go'i-f_fr*'(ﬂj formo an orthonormal set with weight factor
an’ 6 cos”

iz
f G (B)0 SR (6) Sm® 6 cos® 6 A = B, (9.2.20)
a
This discrete expansion therefore Introduces a new quantum mimber — the Ayper-

angular momentum K — directly related to the order of the corresponding Jacobi

2 Mote that in this chapter, due to the need for additional coordinates to deseribe the reaction, @ is an intemal
ooordinate of the projectile, and spins are denoted by o, This differs fmm pevions chapters where 5 was used
for spin.
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polvnemial The integer 72 ghves the number of nedes in goi”f‘r""(ﬁj iz a function of ¢
fexcluding # = 0 and w /2).

We can now define the hyperharmenic basis functions, functions of all the
(g, 01,0, &) excluding enly the dependence on g, as

SylJM i.nl
Vi M (6, 01,02,€) = 0 ¥ (6) {([¥ ® ¥,)e © [Xoy ® Xouls)s ® 81} 5y
(221
allowing the total wave function to be summarized as

Mo % 2814 2515, M
L =pe Z XKE:Ew 2] :J*}szy (s, 71, 72, &) (9.222)
Ixlyf35T,E

9.2.3 Coupled hyper-radial equations

When the expansions (9.2.16, 82.17, 9.2.19) of the wave functions are substituted
in the three-body Schrédinger equation (9.2.5), we obtain a set of coupled equa-
tions, similar to those s2en In Chapter %

RErdE (K4E(KE+Y 7 7

(5o |om — 2] - B) (0 + 3 Vi () () = 49229
2m ldp 2 "

upon rewriting using the multi-index v = {I.0,/55IK}. Here, the coupling po-

tentials depend on the sum of the three palrwise potentials V5, as

3

T{T"’TI:JO.‘J = {yﬁf(ﬂﬁs 71, G-Z:‘E) | Z T{ij()os QE:JI:JZJ‘E) | y’y(ﬂﬁs 71, JZ:‘E):"

Fri=1
(9.2.24)

In these coupled hyper-radial equations, the standard two-body centrifingal bar-
Her 1z s2en to be replaced by an effective centrifugal repulsive potential that de-
pends on the hyperangular momentum K with equivalent L-value of £ = K 4-3/2
In contrast to the two-body case, the barrier does not now vanish when the two va-
lence neutrons are In the s;4; orbital and &£ = 0. This centrifugal barrier contains
not only the single-particle centrifugal bavriers associated with each variable, but
an added repulsion term reflecting the diffienlty of finding both neutrons close to
the core sicmltaneously.

For thres-body bound states In Borremean systems with finite-rangs two-body
Interactions, the three-body asymptotic forms are easily specified [9] as an expo-
nential decay similar to that of the two-body single particle case:

| B
X (2] =0 exp(—xpo), where K= ﬁlz |

(6.2.25)
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However, if any of the two-body subsystems 1s bound when the third is removed,
the three-body asymptotics In one part of configuration space will be ruled by the
two-body asyvmptetics for the bound state moving relative to the third body, and
ne simple representation for the boundary cenditions can be found in the hyper-
spherical coordinate systern. The area of configuration space where BEq. (9.2.25) Is
valid 1s very close to the total space If [9] the ratio of the two-body to three-body
binding energies Ahp/HBhp iz close to zero, which makes it specially suitable for
Borromean systems. Since three-body hale systems are weakly bound, the tail of
the wave function offers a large contribution to mest phiysical observables, contrary
to standard nucleil. Therefore, if one is to calculate good estimates for observables
in three-body hale systems, it 1s vital to expand not only where the potentials are
nen-zere, but also to treat the asymptetic forms correctly.

The coupled equations (9.2.23) may be solved by the iterative methed of Sec-
tion 6.4.1 to find the elgensolution which exists only for specific eigenensrgies
E, or they may be solved by expanding on some comvenlent square-integrable ba-
sz, as long as the basis is sufficient to describe the long-range behavior with o
Both methods are capable of solving Bq. (9.2.23) to find three-body wave fune-
tions Polx, ¥) for a ground state with £ < 0.

For the numerical selutions it is useful to know the asymptotic behavier of the
three-body couplings. For short-range two-body interactions, the three-body po-
tential behaves as V(e — o0) ~ p7 " with 2 > 3, with 2 = 3 for the diagonal
terms. If the valence particles are charged, we also need to include the Coulomb
forces. The slow rate of decay reflects the peculiar feature of three-body systems,
where two particles can still interact when at large distances from the third. The
long tail for the coupling termns has mimerical implications, namely that a larger
radial range will be needed for the calculations.

The three-body Schriédinger equation is usually selved, as here, in the T co-
ordinate system. However, the n-core Interaction matrix elements depending on
rag, for example, are most simply caleulated in the Y coordinate system since the
scaled Tacobl coordinate x4 Is proportional to the ra; vector. One therefore neads
to determine the coefficients relating the components of the wave function in one
Jacobi coordinate system with the components 1n the cther, and this relation is the
lingar combination

L35T L35T

Vegrp () = >R Veagi (¥ (9.2.26)

iy

=

alytic forms. Thelr calculation 1s based on seeing the transformation between the
two coordinate systems as a sbx-dimensional rotation. The relation between the
Y coordinates (xY, ij, labealed (1} in Fig 9.3, and the T coordinates (xT,yle,

The cosfficiants {EEEEHYE;/} . called the Raynal-Reval coefficients [10], have an-
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labeled (3) In Fig. 9.3, can be expressad as

xU = —cespx”’ +smpy”’ (0.2.27)

vi = —smpx® —cspv’ . (0.2.28)
The rotation angle is related to the mass of the constituents of a two-neutron three-
body system by

Ag . 2+ AE
_ q _ f2t 4 9.2.20
b= W sme=yo o (9-2.29)

for core mass Az. Thus, when calculating the matrix elements for the n-core in-
teraction, there are three steps lirvolved: transforming the wave function from the
T basis to the Y basis, parforming the caleulation of the matrix elements in the
Y-coordinate systemn and rotating back from the Y basis to the T basis.

9.2.4 Pauli principle

Since the microascopic detall of the core 1s not specified in this three-body medel, it
1z difficult to fully antisymmetrize the three-body wave function. Antisymroetriza-
tion can be approximately taken into account through Panli blocking, to guarantee
that the valence nucleons deo neot occupy the lowast coredn states that are already
fillad by the core nucleons. In the simple case of "He, the valence neutrons should
net be in the lowest 514 orbital, since the four nucleons in the o core already fill it
up. A crude way of taking into account the Pauli principle is to add by hand a re-
pulsive short-rangs interaction in the s-wave channel to keep the valence neutrons
out. A more systematic way of introducing this same effect 1s by generating the
supsrsymmetric potential [11]. Alternatively, we can project the forbildden states
out from the existing model space before diagonalization [12]. These methods are
not all equivalent, and a comparizson of the various Pauli blocking methods iz given
n[13].

9.3 Three-body continunm

Cre can solve the Bq. (9.2.23) for positive energies, with the appropriate scattering
boundary conditions, to obtain three-body scattering states T(x, ¥, £ for £ = 0,
ag well as the bound states ©(x, ¥) for £ < 0 as cutlined in Section 52, This
section provides a summary of three-body scattering states needed for reactions.
More detall can be found in [14, 15]. Here we consider the full dynamics of a
core+i+n system, but ignore the spins o or I of the three bodies, so here L is
the total angular momenturn. Unless otherwize stated, all expressions refer to the
T-basis.
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We first define the Tacobl mornenta for the system considering core=3. If ky, ks,
iz are the momenta of the two micleons and the core in the center-of-mass frame
of the whole nucleus (so ky + kg + ks = 0), then the momenta (ka, ky) conjugate
to the Tacob coordinates (x, ¥) are

kr = +piaz/miks —

54 k;+k
ky = *-,f#{lz}zfm( 33— — 2), (93.1)

so the Fyper-mdial momentum (or ‘hypermomentum') defined by

K=k kD (9.3.2)

iz the same from allthree sets of Tacobl coordinates. The total energy of the system

Isgivenby £ = €5 + i = %Uﬂi + k3 = RERE f2m.

The three-body incoming plane wave can be expressed in terms of the scaled
JTacobi coordinates (x, ) and their conjugate momenta (k,, k) by

Z 1 JK+2(*EP) (ﬂp) Mngy,

exp (K X+Ky ¥) = p)
B LMy

1
(2m)3
(0.3.3)

where the functions G () = goi”f‘r""(ﬁj [¥7, ® ¥7, Jras moay use either coordinate
or momentur angles for the two spherical harmonics, with tan ¢ = ¢/ or &k, /&,
respectively.

Under the influence of interactions, the incoming three-body wave function can
be written as

‘I“H‘:'(x, ¥, Em, l:lg., ,,i I:.l-i:p 5.-"'2 Z 1 X,H.-I:."Cp gLM(ﬂP [gLM(ﬂP&)]#

(93.4)
for wave functions X:;,.Tf(ﬁ:p) that ara no longar Bassel functions. For unchargad
bodies, these hyper-radial continunm wave functions behave asymptotically in the
standard form

Xyge(0) — [E' s Hpyzl0hio) — SiH K+3,-’2':':' %), (9.3.3)

when there Iz a plane-wave component in channel 7. Sinee the Coulomb fune-
tions H+ and H~ as defined in Box 3.1 behave at large distances as e*¥*#_ they
describe cut- and In-going three-body spherical waves. The S,‘?,ﬁ iz the three-body
to three-body scattering matrix. Phase shifts can be determined through the diag-
onal elernents as S,‘?,T = eia’f, or as eigenphases of the whele 5 matrix. The above
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scattering wave functions are normalized as

ﬁ X (P) e (5 o) dp = gﬁ(x — &), (9.3.6)

The constituent energies depend on the three-body contimum wave functions through

the Tacobi pelynornials and powers of the relative energies az el Ei,"'f ZPE?'_IE“; 2_;5:}1; : ([ey—

€)1 B)-
The wave function for three-body elastic scattering has the general form

glfe

- 1 . ok
Am—(%)z expi(ks % + ky ¥ + F(F, 05, 057) 7 (9.3.7)
where the scattering amplitude can be found from the 5 matrix by
Sri
. & ie” 4 o Ta &
FOE O, Q1) = S 3 (B STIGEM (@) 7M(05), 03.9)

s LA

and (Ut and ﬂ:f are Initial and final angles and hyperangles, assoclated with the
momenta (K&, k) and (k;, k;j respactively. MNote that in Bg. (9.3.7) we have
Introduced the antisymmetrization operator A which picks cut channels that are
allowed after antisymretrization.

Finally, the elastic differential cross ssction for scattering in the three-body con-
timumn, i such an experiment could be performed, would be

= |F(E,0f, o)1 (9.3.0)

As usual, if sping are included we will need to perform an incoherent sum over
all final spin projections and an average over all initial spin projections.

9.4 Reactions with three-body projectiles

Reactions with three-body projectiles are particularly challenging as they consist
of a four-body systemn and thus exact solutions would require solving the Faddeev-
Yaknbowskiequations [16]. Az in the two-body projectile case, it iz usual to factor-
Ize the four-body wave function into a part describing the relative moetion betweean
the projectile and the target, and another consisting of the three-body projectile
wave function. Then, the three-body projectile wave functions introduced in this
chapter can be used in calenlating the T matrix and the cross sections for vari-
ous processes. We will briefly mention a few medels that have been developed
speciically to handle three-body projectiles under different appresimations. In
thiz section we assume that subscripts (1) and (2) refer to the two halo nucleons
while (3) refars to the cora.
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The simplest approximation to caleulating the elastic cross section for a three-
body projectile p incldent on a target t could be obtained by solving the single-
channel Schrédinger equation with the Watanabe potential, consisting of a single-
folding over the three-body wave function

Unl B} = (20 (36,7} |zt | P, 7)), (9.4.1)

where U, is the sum of the optical interactions of each of the three fragments in
the projectile with the target:

Ut = Ure + Ug + Tas, (94.2)

Typically, this is the starting point for further Improvements, such as by adiabatic
models In subsection 9.4.2, or by CDCC caleulations In subsection 9.4.4.

9.4.1 Born approcimations

Cre can caleulate the elastic breakup asz a 1-step inelastic excitation of the pro-
jectile Inte the contlmium. For a Botromean system, where thers are ne bound
two-body states, at high energies this excitation inte the contimium would moest
probably happen in one step. In this case the transition matrix elemnent for the
process p 4+ £ — 1 4 2 + 3 4 £ can be written in the DWEA a=

T = (0706, 5, Koy Ky, Bl (R 7] U2 |0 (6, 3 X EH (R, ) (94.3)

Studies of correlations in the three-body continuum iz an ongeing research topic
and more detail can be found for example in [14, 15, 17]. Cross sections for the
excitation of "He on 1*C at 240 MeVau, studied in detail in [17], are shown in
Fig. 9.5. An explicit analysis is given for the various continuum final states of *He,
the comparizon of nuclear and Coulomb contributions, as well as for elastic and
Inelastic processes.

2.4.2 Adlabatic models

A four-body adiabatic model has been developed for reactions at relatively high
energy [18], based on the approximations described in subsection 7.1.1, wheraby
the internal coordinates of the projectile (z,u), or (v, 5), are essentially frozen
during the reaction: the coordinates illustrated in Fig. 5.6 The full four-body
Schrédingar equation 1s

[TR + HEbI:r: 5) + UF’*([': 5, R‘) - EF’*]T([': 5, R‘) =10, (94.4)

where Hap(r, 5) 1s the three-body Hamiltonlan of the projectile described in Sec-
tion 8.2, the Um(r, 5, ) iz again the sum of the two-body potentials betweean each
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Fig 9.5 Comparizon of DWEA predictions for *He inclastic scattering om 12C at 240
eV iu with experimental data, az a function of excitation energy [17]: (a) contribution of
different final statez; (b) contribution of Coulemb werzus nueclear; (2) contribution of claztic
and inelastic. Reprinted with permizsion from 2. N. Ershow, ef al, Phyr. Rew C 64 (20017
064609, Copyright (20017 by the American Physical Society.

projectile fragrment and the target, and £ Is the center-of-mass energy in the p+
Incident relative metion. As in subsection 7.1.1, we expand the wave function In
terms of the three-body ground state Ty and all inelastic and brealaip states @;:

© = Do(r, s}t (R + ¥ Dofr, s)ihsl(R, (94.5)

i=1
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Fig 9.6. Coordinates for a four-body adiabatic model.

A

where the ©; are orthonormal elgenstates of the projectile satisfying
Hanlr, 5] Pi(r, 5) = & Pslr, 5) . (9.4.6)

Here, ¢ 1z 2 generic index covering both discrete and continuous parts of the spec-
tirn. Using this form for the wave function in Bq. (9.4.4), we obtain

(]
> [T+ Unle, s, R) — (8 — &)]:(r, s)a(R) = 0. (94.7)
=0
The adiabatic approximation consists of replacing all 5 — & in Bg. (9.4.7),
which then simplifies to

[Tr— (£ - @)]®¥(r,5,R) = Up(r, s, R)T9(r,5 R},  (94.8)

where the adiabatic wave function is a superposition of many projectile excited
states. We represant this as

T = Oy (r, )Pt (R) + > Tyfr, )03 (R, (94.9)

i3

for sorme new functions (R,

The advantage of the method iz that in Bq. (9.4.8) the internal coordinates of the
projectile appear only parametrically. The equation can be therefore solved as a
two-body dynamical problem for each fixed (r, ) combination that appears in the
projectile initial bound state.

We use a partial-wave decomposition of the adiabatic wave function:

sd IM Yo (FLi7 ) " " 2

o= 3 M) T 5, (6) 8, (8], 8 YRR
JA

P S

9410

Here -y;,y denote quantimn number sets (&, iy)4, L for the Incoming and cutge-

ing channels respectively. The coefficients A,“LM (r, 5] are chosen to reproduce the
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X
v

Fig 9.7 Coordinates of the projectile—target four-body systern, and their projections on
the impact parameter iy —plane.

boundary condition of an incident plane wave. The remlting coupled radial equa-
tions, obtained after substituting Eq. (9.4.10) into Bq. (9.4.8), are

[ RE (d?' L(L+1)

T Oum \dR! R ) - (F- EDJ] Yy (B, 5)

=Y (I Unlr, s, RIN Ty (Rivy ), (9411
.-:Iln'

with the radial wave functions satisfying standard boundary conditions
62 (7, 8) — Gy FL(ksR) + T2 (r,s) HE (RE), (9.4.12)

giving therefore T-matrix elemnents depending on the r, s parameters. The final
scattering amplitnde, and consequently the cross sectlons, can be constucted in
terms of these T:;,H {r,s) by averaging over the Internal coordinates (r,s). See
[1&]for more detail.

9.4.3 Three-bady eikonal models

As we have seen in Chapter 7, for the high-energy limit and for forward angle
scattering, a straight line (eikonal) approximation Is adequate. An eikonal model
has been developed specifically for projectiles with three-body structure [19].

For the description of this model it iz convenient to represent all positions/distances
in cylindrical coordinates, since the projection onto the impact parameter plane
plays an Important role. These are represented In Fig. 977: R, r and s are the
coordinates of the projectile’s center-of-mass, the n—n separation and the core—tin
separation, respectively. When the Incident beam is In the 4 & direction, the corre-
sponding projections onto the Impact-parameter (zy) plane are b, by and bs.
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In the Glanber approximation the elastic scattering amplitnde 1z

—1K, . .
Falq) = ;W” fdb elq'bfdsfdﬂ@nf (elﬁbﬁr,bﬂ - 1), (9.4.13)

whare K Is the Incident wave number for the relative motion, and g is the mo-
mentum transfer, by a derivation exactly analogous to that In Section 7.2
The (Flauber phase shift iz the mm of the phase shift of each fragment,

X(Py bey b} = Xe([Pell + Xal[b1]) + xal[bz]). (9.4.14)

Each phase is defined in terms of the corresponding fragment-target optical poten-
tial, with the appropriate coordinate including recoil:

g 2
b = - o R-—— df
xellbel) =~ | vallR— g55s1) aR,
© [ A 1
bi|l = ——— o R4+ g4+ —r|)dE
xalloal) = — i [ Ul 5 s+ el
w [ A 1
b = - ol R - = d 0415
xolel) = g | Um(IRt g o= gel) R, ©al5)

where we congider only central potentials between the fragments and the target.
The integration iz made over the z-projection of K. Here b, by and by are the
projections of the core and neutron coordinates (relative to the target) onthe impact
paramster plane. Both the reduced mass @ and wave number Ky may be calculated
using relativistic kineratics as In subsection 2.3.3, and in [20].

The Glauber phase shift x(b, b, b,) depends on vactors which lie in the impact
parameter plane, consequently the integration in the z components of Bq. (5.4.13)
Imrvolves only the projectile density. It is convenient then to evaluate the projectils
density projected onto the impact parameter plane, which iz usually dencted by the
Glawber thickness function,

‘E(bf‘:bs) =f dssf d‘]"3 {l@n(x, y)lz}spin: ';9-4-]-6;'

where { Japn denctes an integration over spin coordinates, and s, and v, corre-
spond to the z-projection of 5 and r respectively.
In terms of the thickness function, the elastic amplitude Is:

fal8) = _;fﬂfdb Eiq'bfdbrfdbsf(br,bsj (Eix(b,bv-,b,} _ 1) ,

L417n
whare the momentum transfar and the scattering angle are related through ¢ =

2K sm(8/2). So far, the phase shift 3 iz due to the strong interaction only. The
Coulomb phase x&_; due to the Coulomb force between the core and the target
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can be determined from a screened Coulomb potential of screening rading e, as
described in Section 7.2, Upon adding the peint-charge Coulomb amplimde to the
Fauber amplimde, with elastic Sommerfeld parameter i, we have [21]

1Ky

fal(ﬁ) = pixs {fc(ﬁ) _ E-/‘db pid b42inoln Kob I:Eixopt.{b:l_ 1)}, (0.4.18)

where the new elastic Glauber phase is
Eixe”:b:l =fdbsfdbr (E(bsj br‘) (eil:'xlib,h,br:l‘l‘x.ﬂl:b,bs::l—z‘-‘?ﬂanDﬁ:I) . (9_4_19}

The overall phase factor %2 (the only effect of the screening radiug) has no effect
on the cross sections. In this medel, the only necessary ingredients to caleulate
the elastic scattering cross section are the projectile three-body density and the
neutron-targst and core-target optical potentials. This medel has been applied to
the elastic scattering of 1111 eon 12C[19].

Anocther high-energy theory, of application for reactions with three-body projec-
tiles, 1s that of the multiple scattering expansion of the total transition amplitide
(MEST) [22, 23]. Although this framework iz beyond the scope of this book, we
note several applications of MST to hale nuclei [23].

9.4.4 Four-body CDCC

For lower-enargy regimes, the above I'WEA or elkonal methods become Inaccu-
rata. There are several cther quantum methods belng developed specifically to
handle three-body projectiles without high-energy approximations. Al of these
ara bazed on some form of discretization of the continuum, so we inclnde them in
thiz section on four-bedy CDCC.

As discussed In Chapter B, it 1s convenlent to have a square-integrable reprasen-
tation of the contimum. Cne important difference in the wave function of three-
body projectiles comparad to the definition in Chapter 8 is that here the scattering
wave function Iz always a coupled-channel wave function X*";*r.s (). This hyper-
radial function describes a systemn initially in channel -y; being scattered to a final
channel -y, whers the label 7; is the channel containing the plans-wave componant
in additien to the umal outgeing compeonents. The asymptotic properties of this
wave function iz defined in Bq. (9.3.5). The corresponding bin wave functions are

PRI - g%(ﬁ Xopya (0) A (9.4.20)

for some welght factor g-,( %) whose square norm integrates over the bin to N,
Here 7 = 1,..., Npin Is the bin mumber, starting at sg = 0 as the three-body
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breakup threshold. The full bin wave function describing the projectile for me-
mentum bin 72 and plane wave In channel 7y 1s the sum over all -y of the coupled-
channels bins defined in Bg. (9.4.20). Coupled-channel bins were first Introducad
for modeling core excitation [24], and are still under development for three-body
projectiles. In particnlar, nochelee of g.,,( x) makes the bin wave functions 5{:;,';?:' {2)
all real-valued, In contrast to two-bedy contimmm states.

Ancther way of discretizing the three-body continuum iz to use preudestates. In
particular, Gaussian expansions have been proposed as an efficient method for cal-
culating reaction observables imvelving Borromean systemns [25]. In that methed,
no hyperspherical expansion is used, but rather it is the prodoct of Gaussians in the
saveral Jacobl coordinates that provids the basis.

Similar to the Gaussian method, the transformed harmenic oscillator (THO)
method uses a discrete square-Integrable representation for the three-body con-
timumn [26]. As in the standard THO, a local scale transformation is applied to
each channel component of the bound-state wave function of the three-body sys-
tern xmg(2) in order to obtain a seed for the THO basis x35 (s ,,), from which the
corresponding harmonic oscillator set is generated X;‘gm(pj_ Recent applications

[27] to the inelastic scattering of "He by protons show a cormparative study of two
psendostate metheds.

Exercises

ol Derive the rma radivg expreszion of Eg. (9.2, 14).

Q2 The K nip approximationreduces the coupled-channel hyper-radial Eq. (9.2.23) to
a single equation for a dominant & -channel Consider a simplified model of *He
az two valence nevtrons in p-waves outzide the a-corein the X o;, approximation.

(a) Work out the dominant K channel, K 5.

(b} Take a square well potential in hyper-radiuz, of size 3.5 fm and adjust the
depth V5 zo that you reproduce the experimental binding energy of *He.

ic) Determine the hyper-radial wawe function and use it to calculate the awer-
age diztance between the o and the two nevtrons.

9.3 One model often used in reactions with *He is the dineutron model. Azsume a
dineufron az a particle with no internal energy but a finite size of 1 fm. Assume
the inferaction between the o core and the dineutron can be modeled by a squars
well potential of (physical) radiuz 1.8 fm. Adjust the depth to reproduce the bind-
ing energy and use the resulting wave function to estimate the radiv:. Compare
vour rezult with Ex. 9.20c).

o4 Using global potentials for the fragments and the *He wavefunction in the K nin
approximation, derive the single-folded (Watanabe) potential for three-body *He
on TBB] at B = 21 4 MV

95 Compare the potential derived in Bx. 9.4 with that coming from a direct fit to the
data [28] (uze &g SFRESCO to fit the optical potential).

Q.6 Work out the cikonal phase shift for the three-body *He on 12 C and compare with
that obtained with the dineutron model of Ex. 9.3
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9.7

(1]

(2]
[3]
[4]
(3]
[a]

[7]
(8]
(9]
[10]
[11]
[12]
[13]

[14]
[15]
[1a]
[17]
[18]
[19]
[20]
[21]
(23]
[23]

[24]
[23]

Three-body nuclel

%2 iz belicved to be a halo nucleus with two valence neutrons. These nevtrons
could be in d-waves or in s-waves. Determine the relevant K -channel for having

d° and £° configuration in the K ni, approximation. Take a square well in hyper-
radivz of zize 4.0 fm.

2} For each configuration, d® and =%, adjust the depth of the interaction to
reproduce the binding energy of 2202

(b} Work out the wave function obtained in cach case and study the conze-
quences of the different structure on the rms radivs of 2 C.

e} Foreach configuration, determines the probability that the valence neutrons
are found in the clazsically forbidden region. Which of the two cases i=

more likely to produce a halo nuclanz?
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10

R-matrix phenomenology

The simplicities of natural laws arize through the complexities
of the language we use for their expreszion.

Eugene Wigner

10.1 R-matrix parameters

In the previous Section 6.5, we saw how the R-matrix could be constricted from
2 Hamiltenian and its potentials, using the wave functions of eigenstates in the
Interior region B <0 a, the R-matrix radius. For scattering, the only properties
of the aigenstates used are their energies, and the values of their wave functions
at the R-matrix radinzs. The energles are the R-matrix peole energies g5, and the
surface values of the wave functions gh( ) give the redurad width amplitudes
Yoo = 4/ b/t ga(a) where ¢, = B® (2p,. The R matrix is then easily constructed
at any desired scattering energy £ by BEq. (6.525):

r
Rua(E) =Y % (10.1.1)
p=1

From thiz R moatrix, the scattering 8 matrix can be found by Bq. (6.5.33):

P Loy _
5 = tfH — aRtf(H —AH7) most generally, (10.1.2a)
tzH+ — aRtz (HH—GH+)

H= — aR(H~'—H")

= gz R FH— G+ 't are all aqual, (10.1.2B)
H™ — aRH™
~ A* _aRH+ whenalse 8 =10, (10.1.2c)

and hence all the channel cross sections.
This suggests that, if our aim is not so ouch to start with a Hamiltonian, but to fit

288
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a sat of reaction measurements over a range of channels, energies and angles, than
all we nead to do 1s to find the reduced width amplimdes g, and the correspond-
Ing pole energies e, These parameters are sufficlent to describe all asymptotic
properties of the scattering wave functions, and hence all cross sections that may
be measured. After fitting these parameters, it Iz comparatively easy to interpolate
of extrapolate as desired in energies and angles. This fitting programme iz called
R-matrix pheromenology [1, 2, 3].

The methods of fitting data to find reduced widths and pele peositions will be
described in Chapter 15, For now, we presume that this fitting has been done, and
in the present chapter discuss the interpretation of the results.

To facilitate the understanding of an R-matrix fit, it iz useful to medify the
derivation in Bq. (10.1.2) of the S matrix so that approximations may be made
to give simpler formulae that can be mere easily understood. Thess reformula-
tions will refer in particular to widths, either reduced, partial or total, as well
ag to shift functions and penetrabilities. We will clarify the connection between
R mmatrix poles and resonances (which are 5-matrlx peles). To begin with, we
examine the one-channel R-matrix theory in more detail, beginning with a simpler
derivation of elastic phase shifts . Later we will derive a level matrix formulation
moore suitable for omlti-channe] modaling.

102 Single-channel R matrix
16.2.1 Phase shifis from the one-channel R matrix
In the one-channel case, all the reduced masses in the £, In Bq. (10.1.2) are equal,
and matrices are only 1 x 1, so wefind the 5-roatrix element according to Bq. (9.5.12):
H™ —aR{H™ - fH™)
H+ —aR(H+Y — fH™)
l1-aR(H~™'/H™ - F) H~

8 =

= —. 1021
1—aR(H/H+ — 5) HF (10.2.1)
At a given scattering energy &, using the Wronskian FG—GE =1,
HY & 4+if  GHIF FF4GGE 1
i M TOT . (l02.2)
HY  G4iF G+ 1F £y GE £y GE
Thus wea can writa
+¢ =
ey =S+1IP and e =5-1F, (10.2.3)
by defining a skift function
FF4+ GG
S(E) = ka2 TS (10.2.4)

F% G
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and a peretrability
ko
whare the Coulomb functions F and & are all evaluated for argument o = ka. The
wave number & and Sommerfeld parameter % have their usual relation to the c.m.
scattering energy £
The final facter in Bq. (102.1) can be rewritten

H- G —1f oZid
Ht  G+iF
b
where ¢ = — a.rcta.na (1027

, (10.2.6)

Iscalled the Aund-sphere phase shift since thiz would be the scattering phase shift
if the wave function wers forced to go to zero at £ = o, as can be seen from
Eq. (3.141).

In terms of the shift function 5, penetrability P and hard-sphere phase shift ¢,
the 8§ mmatrix iz

1-R(S—1P—af) .
S = I TRE+ P (H02-8)
1—R(S—af) +iRP

1—R(S— af) — IRF

(10.2.9)

From § = e*¥ we see the scattering phase shift iz & = @ + dg, where the R-matrix
phase dg is

op = t RP 10210

RS RS — ) (10.2.10)

For single-channel scattering, this i1z a practical formmla to calenlate the phase
shiftz. Cften we will abbreviate S = 5 — a3, but not forget that 5, 5 and P
are all functions of the scattering energy £

In some special cases:

s For bound states at negative energles £, the penetrability iz zero, but the shift
function can still be defined as the logarithmic derivative of the Whittaker func-
tion.

e For neutrons and photons and ke <€ L, the penetrability may be found us-
ing Bq. (3.1.18), namely P o &%541. For s-wave neutrons, this simplifies to
Fr_g = ka, with the shift funetion 5; = 0, and the hard-sphere phase shift 1s
o = — arctan &e in this partial wave.

e For charged particles with ka < L, the penetrability iz dominated by the large
value of the Irregnlar function & for small ke, Using Eq. (3.1.65), we find
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Fr s (2L + 1)%(ka)* M 10 ()% For s-wave scattering, this simplifies to

By = 2mpkaf(exp(2my) — 1) = Smapkae exp(—2my) (noting that nk iz energy
Indepandant).

10.2.2 Isolated poles in single-channel scdttering

The simplest R-matrix fit 1s for a single pole in a one-channel problem. Suppose
that we have found a reduced width amplimde -y and a pole energy e, such that

R=+%/(e,— £) (10.2.11)

gives a muitable fit to some small range of experimental data. Can we tell if there is
i resonance of a bound state? What would be the width of the resonance? Why Is
+% called the reduced width?

From Eq. (102.8), the 5 matrix iz now
1-— ’TZ(SD —iP)/(ep — &) o Zid
1435 +1P)/(e; — E)
3 2ry* P o

E—(ep— 75" -1y’ F)

_ E-lep =+ i F]
E—lep—7*5" — 17" F]

which, at first glance, appears to be aresonance of Breit-Wigner form of Bq. (3.1.94):

8 =

= |1 (10.2.12)

(10.2.13)

Jidng(E) & — £ — 172

S(E) = BT (10.2.14)
for a pole at & = £, — 1" /2 having parameters
Ej =g, — y s = ep—f;rz(._‘-’:'— i)
I'f = 24P, (10.2.15)

These values are called the formul resonance position and width, hence the super-
scripts . We can see why % is called the ‘reduced width’, since it is the result of
removing (twice) the penetrability factor from I'. We can see why S{ &) Is called a
‘shift funetion’, as it contributes to the shift from the R-matrix peole at p towards
the S-matrlx pole at E.f . (As 89 = 5 — af, we will see below that it might be
useful to choose § = S(£) /e In advance in order to fix that S £) = 0 for some
predetermined energy & of interest. Thiz is called the nmatwral boundary condition
for 5.)

These ‘formal’ values would be exact if the shifts 5 and penetrabilities P were
constants independent of energy, but they are not, so the true position iz more
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corplicated. The true resonance position is taken as the complex ensrgy where
the 5 matrix has a pole, as discussed in subsection 3.1.3. That is, we should solve
for complex energy £ the equation

E =g, — 3" E) — 0y P(E)
or B —il = g — 2 S0(E. — T/2) — wiP(E. — 1L} (10216
H we are unwilling to directly evaluate these right-hand sides for complex £, we
mmay use Taylor series to extrapolate off the real axis as SP( £, —11°/2) = SY£.) -
W ET/2, ete. The Thomas approximation [4] assumes that the shift function is

locally linear, and this appears to be generally quite accurate. That is, we solve
instead the linearized form

E—if = g — ¥ [S7(B)—1S(B) ] - WP (B )P £, )] (10217)

Equating the real and imaginary parts gives

B, = g, —y'5°(£,) — 24" TF(E,) (10.2.18)
and — " = *T'S(E.) — 29*P(£,),
F
50 T = 2 P(E) (10.2.19)

LSRN
YP(E. ) P'(E,)

and By = ey — 7' (Bx) - + RSBy

(10.2.20)

Usually the third term in the £ expression is neglected, along with allhigher-order
terms, and the solutions are now called the ebserved resonance energy and width.
These satisty
BT = g — SO(E7%) (10.221)
e _ 2V P(ET)

= T4 s (Eoey” (10.2.22)

A further simplification, still in the spirit of the Thomas approximation, iz to eval-
uate S°(£) not at £°° but at the R-matrix pole energy e, The Bq. (10.2.21)
becormes now an explicit rather than an implicit equation for £ Because the
penetrability is extremely dependent on energy, Bq. (10.2.22) must still use frcte
rather than eq.

The ‘observed’ resonance energy £ = A7 on the real axis has the great vire
that in Bq. (10.2.13) the first fraction Se~%® = _1 showing that the R-matrix
phase shift dp = /2. Examples of d plots are shown in Fig. 10.1.

For these reasons, the ‘observed’ resonance position is often definad as the en-
argy where dp = w/2. This implies from Bq. (10.2.10) that the ‘cbserved’ energy
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— 1 B =B-t
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E,. (Me, la)

Fig 101, Examples of R-matrix phase shifts dg for low-cnergy n—o scattering, along
with the hard-sphere phase shifts &y, in the 2, p and d-waves that have been subtractad.
The rezonance in the p, ;p channel iz now much moers vizble thanin Hg. 3.2,

iz in general where
R(ET™) S (B2 =1, (10.2.23)

an expression which can be used with any mumber of R-matrix poles to find one-
channel resonance pesitions. The ‘observed’ width T can in the general case be
cbtained from

(10.2.24)

-1

d& | g g,

using again the Thomas approximation. As definitions of a resonance energy, how-
ever, the equations (10.2.21, 10.2.23) have residual dependence on the R-matrix
rading ¢ which enters into the evaluation of the hard sphere phase shift ¢

MNote that neither the ‘observed’ resonance position, nor the real part of complex
pole energy, is In general the energy where the full scattering phase shift satisfies
d = /2. A somewhat better estimate is where the derivative dé /d & has its max-
immrn, because the hard-sphere phase shifts vary only moderately with energy. If
the poles are wide and a long way from the real axis, however, then the Thornas ap-
proximation iz net so reliable. In general, the Coulomb functions £ and 7 are then
neaded at complex energies to find the true 5-matrix peole by explicit szarching in

the complex plane.
It is possible for the R-matrix pole energy ep to be negative like a bound state,
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but for it to still describa a resonance at £, > 0 bacausa of tha shift function in
B, = ey — ¥*S"(£,.). To find the width of this resonance, at least in this case we
cannet approximate the penetrability P{£&) by P(ep) since the latter value iz zero.

It is most likely that negative e; values correspond to gemuine bound states for
E. « 0, also called sub-threshold states. The shift —4*(S( &) — af) may still
be found, showing the difference between the R-matrix pole energy and the actual
bound state. If the boundary-condition parameter 8 is chosen as the logarithmic
derivative of the bound-state wave function at £ = «, then it can be prearranged
that S = O at a spacific energy. The application of this natural boundary condition
toa specific sub-threshold state 1s good practice ifthe energy of that state 1s already
known from other experiments, we do not want to vary it in a fitting procedure. For
each spin and parity JT, we can choose @ so that SP(£}) = 0 at some preferred
anergy A

Magnitude of the reduced widih

The magnimde of the reduced width amplimde yhas physical meaning. In a poten-
tial medel, it 1s propertional to the magnimde of an interior eigenfunction w(ea) at
the surface A = . If thiz corresponds to a physical resonance then -y will be small,
since the resonant wave function will be large and oscillatory in the interior region
of the potential, and its overall neormalization to unity along with tunneling through
the barrier will mean that w{e) will be small cutside the potential. The larger the
Interior resonant wave function, the smaller wia) and -y will be. It iz physically
reazonable that a resonance with a large interior amplification of the wave function
will be ‘narrow’ or ‘sharp’ with energy, with a small reduced width ¥ and hence
small width I = 295 F.

Although both 4% and penetrability P depend on the matching radius e, the
resulting I should be almest indepandent of radins. This iz because the value of
w(a) in -y reflects the tunneling at internal radii R < «, whereas the penetrability
P reflects the tunneling from A = ¢ out to infinity. The combination of these two
factors should not depend on where the R-matrix theory changes its description of
tunneling.

H we were to make a list of reduced widths of all the poles p, some will be
large and the others small. The small widths generally correspond to resonances or
bound states, whereas If not a resonance, the reduced widths will be larger.

In the limit of weak or uniform potentials, non-resonant % may be estimated
by considering an eigenstate of uniform probability density inside a radins a. The
value of ¢ in this case should be as close as possible to the edge of the potential, In
which case we darive what 1z called the Wigner Umit f;rf{, for the reduced widths.
A constant probability density indicates constant w( )/ H, which Implies w(R) =
3%/24 % { for unit normalization over K < a. The reduced width in this limit is
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thus

Lk . 3R
wial

i
= = . 10225
i e { )

2ua
The Wigner limit can sometimes be used in the absence of any specific strictiral
informmation. It is strongly dependent on the radius q.

Anocther estimate of reduced widths, slightly mere realistic, 1s to use the single-
particle states in some potential. Let us choose some standard Woods-Saxon ga-
ometry and spin-orbit potential, and adjust its depth so that it has a single-particle
clgenstate whose energy £, agrees with the resonance state of Interest, and whose
wave function w,( F) has the mumber of interior nodes expected from a simple
shell model. The one-channel R-matrix theory of subsection 6.5.1 then gives us the
reduced width amplimdes of Bq. (6.5.14), allowing us to define a single-poarticle
recduc e widih of

z

A
Yo = g n(®)’ (10.2.26)

These single-particle widths will vary with energy and partial wave L in a more
realistic manner than v, .
Given actual reduced widths ¥%, the Wigner or single-particle ratios

0 = ¥i iy o 65 = (10.2.27)

are dimensionless, and can sometimes be used like spectroscopic factors to express
a ratic betwesn the actual reduced width and the width in some simple limit. They
are however rot the same as the spectroscopic factor, as 4% (and hence the 8%)
depend onthe outer surface properties of an elgenstate, not on its volume integral as
does the spectroscopic factor. The reduced width for a bound state Is more closely
telated to the asymptetic normalization coefficlent (ANC) defined In Bq. (4.5.24),
ag both are measures of the outer asymptotic properties.

B ¢(r) is a true single-channel bound state, and § chosen as § = &/ at
7 = g from the ‘natwal boundary condition,” then 5% = 0 at the bound state.
The R-matrix eigenfunction w(r) will be strictly proportional to ¢(r) where It
exists inside r = @ @(r) = Aw(r), where A = 1 — [*° |¢(v)|%dr reflects
the different normalization requirements. The ANC value O iz the coefficlent In
@(r) = OW(—2kr) for the Whittaker function W[ —2kv) specified in Bq. (4.5 24).
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The reduced width iz therefore

ﬁz
7= wla)[?

Dpe

RO W(—2ke)®
BT a—

LK OF W(—2ka)®

= —— . 10.2.28
Dpal — OF [°° |W/(—2kr)|2dr ‘ )

For deeply bound states A == 1, and then we will have the proportionality 2 o OF,
but the integral in the dencminator may become lmportant for weakly bound or
halo states.

16.2.3 Multiple poles in one channel

More general behavior of the energy dependence of R(E) may be obtained by
expanding it using more than one pole:

RIE) =Y ¥ /(ep— E). (102.29)

Resonances inthis case, probably several, may be found by solving the Bq. (10.2.23),
namely R{E)S(EL) = 1, and their widths by differentiation of the R-matrix phase
shift i by Bq. (10.224) at the various ‘observed’ resonance positions £.. Note
however that this definition of resonances implies that a resonance exists betweean
avery successive palr of R-matrix poles, but these may be too broad to be ne-
ticeable, espacially if they are higher in energy than the Coulomb and centrifugal
barriers.

If the energy of interest 1s away from any poles or resonances e, then the R(£)
iz approsimately constant. The ‘distant pole” approach is to replace the R matrix
by a constant

R(£) = Ry, (10.2.30)

g0 one simple approximation around a single resonance s to fit the parameters of
one peole In addition to some constant:

R=7"/(e; — £) +Ry. (10.2.31)

Adding such term allows us, for example, to describe the slow energy variation of
some non-resonant contribution, as the value of Rp can often be fitted to simple
formns of phase shifts.

Later in Section 104 we will describe an alternative fyvbrid model, which uses
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potentials to describe the non-resonant processes. The R matrix from the poten-
tials will be combined with phenomenclogical pole terms for specific resonances
beveond the scope of a potential model.

10.3 Coupled-channels R matrix

To facilitate the understanding of a omlti-channel R-matrix fit, it iz again useful
to modify the derivation of Bq. (10.1.2) of the 5 matrix from the R matrix, so
various approximations allew simople formulae to be derived that may be easier to
undarstand.

10.3.1 Revired derivation of the scattering 5 matric

We start ag before with the matrix expression of Bq. (6.5.33). We follow the pattern
of the derivation giving Eq. (10.2.1), but remember that these terms are all matrices:

§ = [t2H* — aR t3(HY—gHT )] [t3H™ — aR t3(H~'—pH )]
= (t3H") 2 [1—aRHY HY —8)] 7 [l—aR(H™/H™—@](tiH") (103.1)
where for matrices A/ F = AB~!. We have assurmed that the asymptotic Coulomb

wave functions H have no off-diagonal terms when the diagonal elements of t =
Rt /2u vary for different mass partitions, which iz normally the case. Following

-
T

(]
y

fngulal ciommmacion - |Sqd7E
Inbarg iabed Cicmm mection - S YE

z . . . .
4.5 47 48 5.1 53 55
Meubron energy E M=) Metiron enengy E (M=)

Fig 10.2. Poszzible kindz of interference patterns in the “‘differential® (left) and integrated
crozs sections (right) for s-wave scattering on a nuclens. A single R-matrix pole at 5 MV
was usad with a reduced width of 30 ke’ at 0==8 fm, for varying additive contributions Ry,
The ‘differential’ crosz section iz obtained by coherent addition of the s-wawe S-matrix at
an amplitude st at 4 to represent scattering from other partial waves.
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now the pravious pattern of subsection 10.2.1, we now define a ‘logarithmic’ matrix

1
L=H¥/MH—g= E(S+'1P — af) (10.3.2)
whare P, 5 are taken as matrices with diagonal elements
Py = kaa/(F2+GE) (10.3.3)
and Su = (FuFy + GaGa) Pa. (10.3.4)

Since H™ /H™ = L* also, we have
§ = (taH*)" 1 — aRL] Y1 — «RL*)(t2H")

a-
=4/ — 1 —aRL]7'1 — aRL*]WtH-H*
H+ .-'_tH H+[ 2 ] [ i

ﬂil—aRL_ll—aRL* tH-H+ 10.3.5
gl - Rz - aRE] (103.5)

where (7 is the matrix with diagonal elements e'#= for hard-sphere phase shifts
tan Po = — Fiy /G The matrix product (tH™H™Y) is diagonal, with elements

RE kga BE Ruga
Qi Pa in  2F:
in terms of the penetrability defined above in Eq. (10.3.3), and channel velocities
u=nkiu.

, The symmetric $ matrix is constructed from the above § by Bg. (32.12): § =

vI8vy™ 2 using the same velocity factors put Inte a diagonal matrix v. This means
that we have the simpler form for

- 1 1 1
S =vwin———[1 — aRL]™[1l — aRL*]y/ Ihva/P vz
1/ hve /P ‘

HoHit. = (FZ+GL — (10.3.6)

= NP3l — aRL]"![1 — R LY]P— 30, (10.3.7)
We now use the matrix identity
[l - RA™[1 - BB]=14[1 - RA|7'R(A- B (10.3.8)
to find
§ = QPI[L + (1 — aRL)~1aR (L — L*)]P~300 (10.3.9)
= QP3[l +(1 — aRL)"aR 2iP/a]PT 302 (10.3.10)
= QL +21P3(1 — aRL)"IRP]0. (10.3.11)

This iz the main result: a derivation of the § matrix from the R matrix, using the
penetrabilities and shifts, with el = §° 4+ 1P.
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In the one-channel case, the Bg. (10.3.11) reduces to the equations of subsection
10.2.1. In the two-channel case, we can perform the matrix inversion by hand,
vielding the 2 2 8 mmatrix

§11= e [1 + 2P [R1; — ale(RiaRer — RE)]e ] (10.3.123)
S.2 = e¥¥3[1 + 2P, [Ryy — aLq(Ry1Ry; — RE ] (10.3.12b)
Sy = §py = lerenly plERE pl/Eg-1 (10.3.12¢)

where the determinant is
d=(1—aR11L1)(1 — aRw L) — a* LiRE, Ly (10.3.124d)

These equations have a very simple form i there Is one izolated level g5, ashere
Roic = Vava f(ep — £) and hence R1aRzz = R%z_ In this one-pole case all the
alements have the general form

12 12
gal’a = Eld)ﬂ Eal'a + glp Tﬂ,}lﬂfpal' Eid)ﬂ'l
I:EF — E:JI:]. — CLRHL:[ — CLR;;L;:J
. Tl .
= g% | G + = é¥a’ (10.3.13)
[ ep— BE— 8] -1y Pi—1 53113 P2

since the formal widths of Bq. (10.2.15) are T’y = 29% P We have used the shifts
and penetrabilities defined in Bg. {10.3.2), with 5 = 5 — a/ as bafore.
This formula suggests we define a total formal widih

Dior = 273 F1 + 295 Pp = D1 + T, (10.3.14)

interms of which the two-channel one-pele S mnatrix begins to look like an isolated
Breit-Wigner resonance:

jI‘sz‘l“':z _
=t g¥at (10.3.15)

ga"a = eld)ﬂ Ot — .
E—(ep—715] — 157) + Dot /2

with formal resonance energy B = e, — ¥257 — ¥250. We see that the shift
contributions from the individual channels are added together to produce the shift
for the coupled-channels resonance.

The non-elastic cross section contribution from a specific coupled-channels sat
Jop 18 given by Bg. (3.2.20). Using the spin weighting factor guor defined by
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Eq. (3.2.31), the total cross section for scattering to channel o from o 1s

aT

G-M‘:'I:JEL[:) = k_ggimr. |Smi'|2
i
T g T.L.,
= T3 44
L TN o S | N
Tale
- I?ng o o (10.3.16)

k] (B — Bf)? +Th, /4’

which iz exactly the form of an izolated Breit-Wigner resonance with a strong peak
at £ 5 £F and fwhm of Ty

The Individual ', are called the portial widths, because they are (7 times) the
decay rates of a resonance through specific exit channels. The total (formal) width
et = 2, 'a s the sum of all the partial widths, and describes the resonance’s
overall decay rate. Mote that, by time-reversal invariance, the same width applies to
the emtrapce channel as tothe exitchannels, and hence ', meamires alsothe rate at
which a resonance could be populated from a given initial scattering configuration
£y .

This summation of partial widths and shifts has been proved for the two-channel
one-pole case. To ses how partial widths add together in the omltichannel case,
we first need to present the level-matrix formulation of R-matrix theory.

16.3.2 Level-matrix formulation

Allthe matrix operations sofar in this chapter involve inversion of a matrix with the
dimensionality A4 of the number of particl-wave chanmels In a coupled-channels
set for a speciic overall spin and parity J7,. Sometimes, however, It Is more
comvanient to reformulate the theory so that the Imversion Is only needed of 2 matrix
with dimensiens P of the number of levels g5, In R-matrix phenomenology, this is
often a smaller number. So we now show how to construct a P P symmetric level
matrix A with elements A, for level indices p, g, such that the S matrix depends
on caleulating the inverse A1

To simplify the derivation of A, we write the previous theory as much as possible
in matrix formn. We write the initial A7« Af R matrix of Bq. (10.1.1) as

R =~ £y (10.3.17)

where ¥ is the P M rectangnlar matrix with elements ... and & is the matrix of

diagonal reciprocals 1 /{e, — £°). From the previous mmatrix form Bq. (10.3.11), we
havea

§ =l + 2P3(1 — 4T Fy(S° +1P)) 4T Fy)PE0.  (l0.3.18)
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We now try to find a matrix A so that this can be rewritten
§ = nft + 2Py TAyPID, (10.3.19)
for which we need to satisfy the identity
(1 — 4T Fy(8° +iP)) "7 By = 47 Ay, (10.3.20)
which is
¥ Ry = (1— 4" Fy(S° +1P))y" Ay
= 7 Ay — T Fy(5° +1P]yT Ay,

or AT [F— A - (5 +iPy Ay =0, (10.3.21)

This condition will always be satisfied if we can choose A such that
Fo B (5" 1P A =0 (10.3.22)
or A1 = £ - 4597 _ iypaT, (10.3.23)

This last equation iz the defining equation we are looking for. If we construct
diagonal and symmetric off-diagenal shift and width level matrices as

Apg = (158" g = 3 1peS0%e (10.3.24)
and Ty = A7PY Jpg =23 FpaPatom (10.3.25)
then the defining equation for the symmetric level matrix A is
(A gy = fpglep — B) — Apy — 1T (10.3.26)
or — (AN = Blpg — (epfpg — Apg— 100, (10.3.27)

The ﬂm and f‘pq are generalized shifts and widths that now have off-diagenal as
well 3z diagonal effects on the levels. Thelr signs are now important, and reflact
the interference betweean levels, as they enter Into the matrix inversion

. . _1
E— =51 + &11 + %f'll &12 + %PIZ -
A=— Agp 4+ 1T E—ep+Ap+ily ... | , (10328

remerrbering the symmetry of the I and A matrices. From BEq. (10.3.19), the full
mmlti-channe]l multi-level 8§ matrix 15 construected in tarms of this matrix inverse A
as
Sute = e | fatea+13  ToiZB oy T2 | O, (10.3.29)
AAt
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where we define I‘;’f = Yo (2F,)¥? to preserve the signs of the 7, . This level-
mmatrix construetion is alse a proof that the S matrix is symmerric for symroetric
potential Interaction matrices, as originally claimed in mbsection 3.2.4, as in that
case the R matrlx is also symmetric.

e level: an solyted vesonance

The coupled-channels case with just one level p = ¢ = 1 Iz now particularly easy,
as the level mmatrix A is then a number. Using

An =3 1.5 (10.3.30)
and Ty =T =3 i Pa=> Ta (10.3.31)

the A iz now
Al =F—(e1— A — iTyy) = B B, (10.3.32)

where £ = e — ﬂn - %Tm iz the complex resonance pole position. Thus the
matrix of scattering from this 1sclated pole is

B T e
laafa - == el o, (10.3.33)

Sa"a =l i Ep

Elastic scattering: The contributing part to an elastic cross section (o = of) s
therefore identical to BEq. (10.2.12),

(10.3.34)

. ir
Sm=ﬂ§[1— = ]

E— £,
A function of § which appears in the elastic amplitude f(#) (sse Bq. (3.1.34)) is
1T, ]

& 4|, 1
San — 1 = Die [smr,i: DE- &

(10.3.35)

using {1, = e8®  The scattering arizing from the first termn sin ¢ is somoetimes
called in R-matrix theory the ‘potential scattering’, and that from the I/ £ — £5)
termn the ‘resonance scattering’, and there will also be an interfarance term Howe-
aver, the ‘potential’ under discussion here 15 just the ‘hard sphere’ at radins & = «,
and should net be mistaken for the attractive optical-potential well, more com-
monly called the scattering potential. We discuss below in Section 10.4 a better
phiysical way to combine potential (*shape’) and resonant scattering.
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MNon-elastic reactions: The contributing part to a inelastic cross section (o # of)
iz analogously
T.L.,
J
'E‘:?' Her (& —e + ﬂn:'?' +TEe/4
which is 3 Breit-Wigner form that iz similar to BEq. (10.3.16), but now established
for any mumber of partial-wave channels. The total (formal) width Iy = 50, T

iz again the sum owver all the partial widths for each coupled channel. Because,
strictly, the shifts and widths are energy dependent:

" Dol 81 5 (£)
Fcz Bt (B—e1 + ﬂn(E))z + Dpotl £) 2 f‘i

the cbserved and tmie resonance widths will be ag usual slightly different from the
formal value T

G-m'! I:J;I:-it )

(10.3.36)

O s B) = , (10.337)

10.4 Combining direct and resonant contributions

In most reactions there iz a combination of a smooth background cross section
and large peaks at the several compound-miclens resonance ensrgies. From the
potential or coupled-channels methed of Chapters 3 and 4, it is usually possible
to describe the smoeoth background as a direct reaction, and pethaps also a few of
the resonances as arising from particnlar channel couplings. Rarely iz a coupled-
channels methed able to describe @il the resonances that are seen In experiments,
whereas the R-matrix method can simply add further peles with partial widths
at 2ach level chosen to reproduce the experimental data. The R-matrbx methed,
however, does not describe the smoeoth direct contributions so well: this 1s usnally
dene by specifying some distant poles at fixed energies outside the energy range of
Interest, but these background peles do not have specific physical significance.

In order to get the best of both worlds —the use of channel couplings to describe
the direct parts, and the use of R-matrix poles to describe the compound nuclear
msonances — we could reasonably consider a Aybrid model which combines both
sorts of contributions. The combination iz mest naturally dene in the R-matrix
theory, as there it 1z explicit that all the pele contributions should simply be added
together. We therefore define hybrid models in which the R matrlx R™ from the
coupled channels — Eq. (0.5.25) —Is combined with additional phenemenclogical
terrms RFY ag previously In this chapter. We constict

R = R~ 4+ RFY (10.4.1)

F
or RYE = Z’Ypﬂ?’“ ZQ‘?‘“Q‘?“’, (104.2)
p=1
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where the phenomenclogical poles at energles f, forg = 1,..., ¢ have reduced
width amoplitudes gg. for channel o Bach total spin and parity J7, of a coupled-
channels set has its own set of phenemenclogical poles.

Two analyses shown in Chapter 1 for the reactions of protons on ®B and 1N used
this hybrid method. Figure 1.9 shows the S-factor for the "Be(p,y)®B reaction,
where the final proton state is very weakly bound at 0.137 Me¥. This calculation
Includes a direct-capture mechanism for the smoeth contribution, combined with a
hybrid R-matrix pole for the 17 resonance at 640 keV. An R-matrix radius of 20
o was uged, along with asymptetic couplings out to 300 fm using the methods of
Section 6.6 in order to obtain correct 5-factors at the lowest energies shown hera.
The calculations shown in Fig. 1.13 was principally a phenomenclogical R-matrix
fit with @ = 6.5 fmn. The level at 6.79 MeV¥, howaver, Iz weakly bound at 0502
Me¥, zo, in order to get the flat S-factor line around 1 mbMeV, a direct coupling
was added for the transition between 6.5 and 50 fm.

Exercises

0.1 Derive penetrability and shift analytic expressions for 2-, p- and d-wave neutrons
from the formulas in Box 3. 1.

0.2 For given R-matrix pole parameters for s, p or d-wave neutrons, use results of Ex
(10.1), when analytically continued to complex energies, to find the exact pole
pozitionz. Compare with the “formal’ and ‘observed” poszitions to assess their
accuracy.

0.3 Use resultz of Ex. (10.1), for neutrons in a square well, to find pozitions and
reduced widths of R-matrix poles, then positions and formal widths of 5-matrix
poles, uzsing the radiuz of the well as the R-matrix radive. Are there any polez in
s-wave scattening?

10.4 Determine the accuracy of one-pole expanzions for neutron scattering on a square
well, for a range of R-matrix radii outzside the radius of the potential Repeat
numerically for 2 Woods-Saxon binding potential. What do you conclude about
the optimal R-matrix radiuz?

10.5 Izolated rezonances may be represented by an R-matrix expanszion in the snergy
region & around the pole at £ Consider the one-channel caze, z0 Eq. (6.5.6) only
useziog (R

(a) Determine the interior wawe function {2, B for energies E around the
rezonance, vsng Egs (6.5, 167 and (10,334,
(b} One measure of the intensity of a resonance iz the interior norm integral
ol B = [%|x(R; B)*dR. Show, after [S], that
E T E
P = B e AEN + T4

E10.13
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Compound-nucleus averaging

Science makes people reach selflessly for truth and objectivity;
it teaches people to accept reality, with wonder and admimtion,
not to mention the deep joy and awe that the natural order of things
brings to the true =cientist.

Lire Meitner

11.1 Componnd-nuclens phenomena

In Chapter 2 we saw how nuclear reactions are breadly dominated by two kinds
of time scales: the fast direct reactions and the slower compound micleus (CI)
reactions. The direct reactions are typically described in R-matrix theory by a few
poles with large widths, whereas there are usnally very many compound nucleus
respnances, each of which has a narrow width.

Direct reactions are generally foward-peaked with respect to the incldent direc-
tion, whereas the T process has less ‘memory’ about that direction and gives
products which are typically symmmetric about 90°. Usually it is possible to ex-
perimentally separate the symmetric contributiens te a given outgeing channel,
and theoretically the direct and CN cross sections are calculated by quite different
methods. We will sometimes try to model the detalled resonance structure of the
CM process, but usually caleulate the reaction rates averaging over many CIN lev-
els, and use only statistical features of these levels, such as thelr average spacings
and widths.

To describe these CN processes we will use the R-matrix phencmenclogy of
Chapter 10, in particular the level-matrix formalism of subsection 10.3.2 when
we consider the case of extremnely many levels at energles ey and with widths I'p
for states of given spin and parity JT, . The simplest statistical properties will be
the average level spacing I (the inverse of the level density ga(£)) and the
average width ({I'), for each J7, value.

305
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Fig 11.1. Mumerous compound-nucleus resonances can be seen in this plot of the total
cross section oy (B for neutrons incident on ™5Ph. At low energics, individual rese-
nances can be distingnizhed (' < ). In the 0.5-2 MW range they overlap more, and
ahowve 3 WV they are not resolvable (T' 5 D). MNote that ¥ Ph iz aclozed shell nuecleus:
most heavy nuclel have rezonances too numerous to be zeen on a plot with thiz scals

The exact effects of all the CM states on scattering are expressed by the width
level matrices defined in Bq. (10.3.25): f‘m = 23" TpaFaTYea which depend on
the individual reduced-width amplimdes yp, for state p In partial decay channel
e, and on the penetrabilities F,. The average behavior of the f‘pq will depand
first of all on the statistical properties of the y,,. Since by Bq. (9.5.24) these

e Yoo = % ga(«), they depend on the asymptotic amplitudes gh(a) of the

resonant states in channel o at radios e

11.1.1 Porter-Thomar #afistics

H the rescnant states |gp) are very complicated configurations over the channels
then we should expect the reduced-width amplimdes to be statistically distributed
with a mean of zero. Beacauge these amplitndes arise from many random influences
in the Hamiltonian, we expect to be able to use the central-limit theorem, which
says that the overall distribution of the g, should be a normal distribution, cen-
terad here about zero. This was suggested by Porter and Thomas [1], who proposad
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Fig 11.2. Ancady analysiz of distibutions of widths, in **U* from analysiz of 12 low-
lying resonances inn + *° U scattering, from [2]. The M( %) is the number of levels having
a value of I'/{T'} greater than . The curves are the Porter-Thomas dizstributions for the
indicated number of degrees of freedom (i, our n). We zee (Left) that neutron widths sheow
1 or 2 open channels (degrees of freedom), while the photon widths (Hght) have ~20.
FReprinted with permizsion from B & Moore and C. W, Reich, Phys. Rev 118 (19603718,
Copyright (19607 by the American Phyzical Society.

that the normoal distribution

Proq_ L 1 1
Pa (ﬂ_v%{’r?'}a xp( {fr?-}a) (11.1.1)

describe the probability density function for an individual reduced-width amplimde
7 in channel e, where {¥%), is the variance (mean square value) of Jpe in the
energy region being considerad.

The partial widths [ap = 295, P would then have the statistical distribution of
a square of a normal variate. If we define a mean partial widih (I, = E{fjr;a}Pa,
and a normalized variate = = I'/{T"),, then = should follow the probability density
function

Pi(z) = g b, (11.1.2)
T
The penetrability factor P, will vary with energy, but only slowly over the rangs
of many narrow resonances in medinm and heavy nuclei.
The total widths 'y = 3., Tap = 23, ¥ Ex ate composed of the sums of
squares of normally distributed varlables ¥pe. Such a sum, for w terms called
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‘dagrees of freedom’, follows the x® distribution f{A'?), namely

e} nEYV -1 _an
Pa(z) =71 (72) = 5ca5 (E) %, (11.1.3)
where z = I'/{T"), and I'(2) iz the mathematical gamma funetion. The distribution
(11.1.3) has a mean at & = 1 and a variance of 2 /% about this mean.

For low-energy scattering, the number of degrees of freedom 2 will be the num-
ber of partial widths which add together to give the total width. At low energles
and without phote-capture reactions, the distribution of total widths will be P, for
some small 72, and hence will have a large variance about the mean (Fig. 112, left).
When gamma-decay processes dominate, by contrast, because there are so many
of these in heavy miclel — to all the allowed states lower In energy — the value of
7 will be quite large (Fig. 11.2, right). Since the variance of I'/{T") 1s 2/, the
fractional fluctations of 'y, around ({I",) will be smaller for gamma decays than
for particle decays.

11.2 Approximations neglecting interference
11.2.1 Reich-Moore approximaion

In thiz section we exhibit a series of appresimations that neglact progressively more
Interference terms, when compared with the exact R-matrix formmlae of Chapter
10, The first is due to Reich and Moeore [3], who considerad the statistics in the
s for the width level matrices of Bq. (10.3.23), T'pg = 25 ® Ypa Patge. When
7213 large, they argue that the many terms with p # ¢ should average to zero, since
Yoo A1d Y45 should have randomn signs and exhibit random size variations for the 52
different decay channels c.. The off-diagonal terms of I', should at least be rather
small compared with the diagonal terms f‘w_

The Reich-Moore approximation 1z to neglect the off-diagonal terms f‘pq just
in the case of y-channels, since In medinm and heavy nuclel, as discussed above,
there are so many partial y-decay channels. The mimber of particle channels is
rmch smaller, and all their off-diagenal elements should be preserved.

The Reich-Moore approximation, which has proved to be enormously success-
ful in fitting low and medium energy nucleon-miclans scattering, therefore approx-
Imates

Iy r=q
qu = 0 p or ¢ are gamma channels (11.2.1)
2% i YeaFatea b and g are particle channels.

Reich and Moore show how to then divide the level matrix A of Eq. (10.3.26) into
blocks so that it is easily inverted.
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11.2.2 Mulii-feve! Breti-Wigner approximation

The next simplification is to neglect il the off-diagonal terms of fm= aven for par-
ticle channels, and hence to neglact some more of the interference terms betweean
different resonant levels for the particles. In this more extreme approximation, we
have from Eq. (10.3.26)

A, =8 L —, (11.2.2)

o WEP—E—*&MJ—‘

from which the scattering S matrix by Bg. (10.3.29) iz

rleple
Suice = e Bt 13— X2 | 00, (11.2.3)
B,— E—iTp

where we have abbreviated £y = e, — ﬂpp iz the energy of the resonant state p.
H thess are compound-nucleus resonances, then the compeound-nuclens part of the
angle-intagrated cross section to channel & from o is

I‘ I‘M
Taal(Tii £) = 5 " G Z (B B+ TR (11.2.4)

where we rernind the reader that I'ap 1s energy-dependent via the penetrability, and
mpregver that the sum over p terms Is only for the levels of specific spin and parity
Jiy- Bach level p has a total width of I'; = I, an energy-integrated partial
cross section of

o0 ot Tl
4B GZ) (T E) =~ grm 22, (112.5)
; a'a K T,

and an integrated non-elastic cross section, for incoming channel o, of

2 —
f AE P FT B = ar M. (11.2.6)

A .iﬂz e Pp
These values, for narrow resonances, will be used directly in energy integrals such
as Bq. (12.1.17).

This iz the multl-level Brelt-Wigner formula, whereby the angle-Integrated cross
saction is an incoherant sum of contributions from all the contributing resonancas,
each peaking near its position £y with full width at half maximnm of Ty, We expect
that this expression would be most accurate if all the widths were much smmaller

than the mean spacing D between the levels, that is for mean widths ") < D.
This iz the case for non-overlapping and well-separated resonances.
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11.3 Hauser-Feshbach models

If we add the cross sactions of the multi-level Breit-Wigner formoula (11.2.4) over
all final statas, the total should equal the summed reaction cross section o defined
by Eq. (3.2.32) for the loss of flux from the entrance channel. This should alse
rmatch the total absorption cross section o4 ghven by a one-channel optical potential
for elastic scattering in channel o, Conversely, If we already know the optical
potential and especially its Imaginary compeonent, we may use this knowledge to
normalize the total widths for the decay of compound nuclear states. This 1s the
basiz for the very successful Hauser Feshbach approximation [4] for caleulating
the production and all the decay channels of compound miclear states. We now
derive the Hauser-Feshbach forrula inthe case of well-separated resonances, using
the above moulti-level Bralt-Wigner exprassion (11.2.4), and in subsection 11.3.5
show how to uge this to calenlate the decay chains of a compound nucleus.

To find the cross sections averaged over many resonances, let us average over
an interval I that containg many resonances: I 3 L) where I is the mean level
spacing for CM resonances of given total spin and parity JT,. We define an energy
average cross section for a sum of narrow peaks gp(&) as appear In Bq. (11.2.4)

by

1 E+Il.l"2
By o= = EjdE
(o(5)) I[g_m o®
_1 f aal B dE
I & E[E:I:Ijz]
1r
=35 | oH(ENE _f o(E)AE (1131

since there are I/ D) peaks within the averaging interval that are similar on average.
The integral over a single resonance of a Breit-Wigner resonance peakin Bq (11.2.4)
givas

“ Coapl atp ?an‘apI‘afp
fn W E_EyiTHA~ T, (1.3:2)
(a5 was used to derive Eq. (11.2.5)), so the energy-averaged cross section is
T Papra"p 2
(Toricel g1 B} = 7 S <T> o (11.3.3)

11.3.1 Widih flnctnation carrecéions

Unfortunately the average ratio (I'apl'aip/T'p) 1s #ot simply given in terms of the
average values of the mumerator factors and the denominator. Because of possible
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correlations in the averaging, we define a width fluctuction factor W, by

Paprafp>=w .-{Pa:":ra":' 11.3.4
(%, =y .

so the energy average cross section can be written

o (T, (T
(Gt i E)) = 1 Grea W el et)

SRR (11.3.5)

whare the average sum (") = > _ (T2},

To estimate the width fluctnation corrections Wi in our I < D limit, we
focus on the mumerators of Bq. (11.3.4). Factorizing out the penetrability fac-
tors, the Wo,r moust satisfy {f;r;afjr;af} = Waw {fjrjf.a}{fjr;af} For inelastic reac-
tlons & # &', so the ’}';a and ’}';a,- should be statistically independent, giving
(Vha¥ord ™ ik} and Wi =0 1. For elastic channels with o = of,
however, we have (3.} = W, (¥2,)7%, 50, defining @ = ./ (yZ,) ¥, the elastic
Wae is the fourth morment {z4). If the 7, follow the Porter-Thomas distribution,
then this is the fourth morment of a normal distribution, namely Woe = 3. To
consarve the total cross section, however, this enhancement of the 2lastic channel
should be compenszated by a proportional reduction of all the other channels. This
will only be slgnificant if there are not too many of those, such as at low energies.

11.3.2 Transmission cecfficienis

For aninceming channel o, the reaction cross section is the sum ofthe o, (F, £
over the outgoing channels o', We now also include the elastic channel o = & in
thiz sum, as this iz the compound elastic contribution to be discussed in subsection
11.5.1. 8Bince 3, I'pep = 'y, wee thus have

o T
f gf(%tlE)dE = F.gfmt.gwra:
o
sothe average is (ol (J7, £)) = k—tg;m@. (11.3.9)

We now establish the abselute scale of the (I';) by connection with the reaction
cross sections predicted by the optical medel. From Eq. (3.2.32), the optical modeal
givas a reaction cross section of

.
STt B) = 505.(1 - 822, (1L3.7)

where S7EF is the elastic optical S-rnatrix element, and comparison of these two
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Fig 11.3. Tranzmission cocfficients for neutrons incident on 5 Zr in various partial waves
L, uzing the optical potential of Koning and Delaroche [3] without the spin-orbit force.

exprassions glves

2 (T
1 g = 2Tla) (11.3.8)
D
We now define the so-called transmission coefficients:!
7, =1—|SE, (11.3.9)

which measure the ‘coupling’ described by the imaginary potentials betweaean the
external scattering and the internal compound-nuclens production. Figure 11.3
shows these for neutrons on *°Zr in various partial waves.

In terms of the transmizsion coefficients, Bq. (11.3.5) becomes

T T T
(el Fize B)) = -5 g,rmerﬁ. (11.3.10)
We see In this expression what are called the Hauser-Feshhach branching watios
Tt
By == 11.311
' Za,,’]';.n.- |i ;|

These Hauser-Feshbach forrmlae have simple physical interpretations. The branch-
ing ratio for the decay B, of a given compound nuclear state to final channel o
iz proportional to the transmiszsion coefficient 7., normalized in the denominator

1 They should be diztingnizhed from e.g. barter hmneling cosfficients becavze theee 7, = 0 for all real optical
potentials, and Fe = 1 for songly abeorbed partial waves.
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by the summed coefficients so the total decay probability iz unity. The produrc-
tlon of the CIV state is assumed to be a time-reversal of the decay mechanism, and
hence iz proportional to the same 7. In subsection 11.3.5 we will see how to
use the Hauser-Feshbach formoula to calenlate all the decay chains that oceur after
compound-miclens production.

11.3.3 Weisskapf-Ewing appraximation

The cross ssction summed over all total spins and parities is

T T
(Tt ) kZme aat (11.3.12)

B
“;rt.\:ht.

This expression does met factorize into a product of production and decay prob-
abilities, because Ji and parity o are conserved quantm numbers that are not
affected by averaging. It only factorizes ¥ W, = 1 awnd the JT, sum can be
ignored. This latter cccurs for example if only one incoming partial wave o 1s slg-
nificant {e.g. 1,/2+ for thermal neutrons on a light spin-zero target), or if all the 7,
have the same JiT, dependence. The eatrlier Welsskopf-Ewing theory [6] can be
gbtained as a limnit of the Hauser-Feshbach theory by assuming a fixed distribution
of spinz. Thiz enables a complete factorization as

Tai
Tt Tat
This theory simply states that the reaction cross section o’%( &) of Bq. (11.3.7)

decays according to branching ratios B, obtained by normalising the 7 to unit
probability.

(TatalB)) = 05(E) =" = 05(E) Bar. (11.3.13)

11.3.4 Sirong couplings and overlapping resonances

The above derivation of the Hauser-Feshbach formula for the branching raties pro-
ceeded in the lirit of isolated resonances, which holds for example in neutron
scattering on heavy nuclei up to 100 or 200 ke, Above that energy, as the reso-
nances become beth wider and more closely spaced, the condition of I' < D is
ne longer satisfied. Howewver, the Hauser-Feshbach method still worles rather well,
and the above theory can be improved in three kinds of wavys to work In the ‘strong
absorption’ limit. The first change is that I'/ D may become large, but 7 = 1
always, so the relation 7, = 2r{T";) /D can no longer hold. Simenius [7] gives
reasons for using

To=1 - exp(~2r{Ta)/ D), (11.3.14)
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an exprassion which behaves properly with both weak and strong couplings.

Secondly, the width fluctnation correction W, has to be recalcnlated. Tnvesti-
gations by Moeldausr [8] and cthers shows that W, Is generally near unity except
for the alastic channel The elastic value was Wo, = 3 for small 7, but is found
to be near 2 for larger 7, % 1 in the strong absorption limit. Mumerical analysis
of statistical models suggests that it varies soothly between thess two limits, and
various pararoetric forms have been found to work well in practice. A fit to results
of Monte Carle caleulations by Tepel and co-workers [9], for example, gave

Wae =1+ (11.3.15)

1+ 72
for the elastic width-fluctnation correction, which appears to be quite adequate
[L0]. Sea [11] for more genaral calculations of W, .

Finally, at higher energies there will be more open channels from target excita-
tions, and hence direct-reaction transitions during the transition from scattering to
compound-micleans absorption. There will more likely be rotational or vibrational
excitation of the target by the incoming nucleon while it 1z in the surface region.
Several theorles have been developed for this case. Satchler [12] proposes gener-
alizing the transmission coefficients to a matrix, T =1 — $tS. which has the same
diagonal elements as bafore:

Tata = faal — Z(SZF.".'L.')* SZF.".L (11.3.14)
et

in terms of the optical 5-matrix elements. The diagonalising transformation of this
matrix may be used to transform a coupled-channels scattering S mmatrix into an
uncoupled set of dlagonal matrices [13], and the standard theory [14] reused. Some
more general theorles such as that of Kawal, Kerman and McWoy [15] attempt to
Include direct and compound reactions on an equal footing, but have not vet been
systematically tested.

11.3.5 Decay models

The simplest kind of decay network iz that of the irreversible decay chain of an
encited compound nucleus. These form a Markeov chain with different branch-
ing probabilities at each stage, and constitute a Houser-Feshbach model for the
Irreversible stages in the decay of that compound miclens. These statistical de-
cay models can be used whenever there 1s a large number of resonances in the
anergy region of interest, so that the cross section can be caleulated by averaging
over resonances. This can occur for light nuclal at higher excitation energies, for
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medium-rmass miclel away from closed shells and from the dripline, and for mest
heavy nuclal

In subsection 11.3.1, the theory of one-stage cross sections from izolated res-
onances was used to derive the key equation (11.3.10), for the energy-averaged
cross section. We now present this scattering In two stages: first the production
of compound-rucleus resonances, and secondly the decay of such resonances ac-
cording to branching ratios B,. The Hauser-Feshbach decay medel then assumes
that further decays by particle emissions from the residual nuclear states can be
calculated by using similar branching raties. Sucecsssive particle emissions result
in 3- and 4-body final states and moere. Thess canneot be coherently described by
our set of quantum nurabers o for two-body channels, but if each decay 1s regarded
ag statistically independent (deccherent), then the probabilistic branching ratios for
the possible two-body decays of amy residual state may still be caleulated.

We first find the production of a compound-nucleus state when the incoming
projectile p; fuses with the target £;. Any compound-nucleus state may be labeled
by multi-index § = {x,#}, such that = labals the mass and charge of the nucleus,
and £ its excited state, so spin I, parity m, and excitation ensrgy & depend on £,
With thiz notation, the cross section for fusing with a target initially in its ground
state 5; = {xi,l}, to produce a CIY state & in nuclens & = &; 4 p; with spin and
parity I, is

oy T 2hHl Lo, 11.3.17
%8 g k2 (2L +1) (2L, +1) 86 (L1319
TP

for incoming partial wave L,
The transmission coefficients ’]‘jﬁ' are found by using the previous formula for
optical-medel scattering on a nuclear state 3° when absorption produces a state
T =1 S5 e — e — 2 (11.3.18)
This 5 matrix iz calenlated for optical-model scattering in partial wave LJp with
kinetic energy £ = & — ey — Qif, total angular meomentim Iy and parity m3. In owr
previous netation, this is the two-body partial wave o = {y+2',1,¢, L, I, Jp, L}
for a particle ¢ incident on a target =’ (neglecting excited states of g). We find
y = & — ' from the differences of the charges and masses of the initial and final
CM states. The Qf iz the &)-value, namely the energy released on capturing the
particle on the =* ground state to form the ground state of = We set ?:3%:";? =0if
the constimting angnlar meomenta cannet be coupled to the required total I, or if
parity is not conserved.
We can now rewrite Eq. (11.3.10) asthe 2 = 1 case of a general formula for the

n

decay ofa o —U CN-population cross section, with 72 the mumber of particles that
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will have been emmitted after this decay:

o =3 Bagas Y, (11.3.19)
8

whare the branching ratio from state Fto & s

7L

i
Barg= i (11.3.20)
LT Z,S""L""Jj;" ?_.é”:ﬁ?

in terms of the transmission coefficients of Eq. (11.3.18). The sum over 8° in the
denominator 15 over the set of all open channels that can be reached from the Initial
state [ at energy &, which Is the same as the set of all the allowed cutgeing &
values.

The decays will in general include emizsion of allkinds of particles and clusters,
Including deuterons, tritons and o particles i the energles are sufficiently high that
such channels are open. Knowledge is therefore needed of the optical potentials of
all the incident and emitted particles and clusters, with particular attention to the
Imaginary parts of these potentials. This Is because the Imaginary part describes the
‘transmmission’ or ‘coupling’ between exterior scattering and the Interior population
of compeound-nuclens states. Fhotons can also be produced, allowing a nuclear
state to -y-decay within the cascade, but the transmission coefficients for photons
depend on glant-resonance parameters, and discussion of these iz beyond the scope
of this book

The formmila (11.3.19) ignores the width-fluctuation corrections Wi@%"g‘i diz-
cussed in subsection 11.3.1. To include them would require a modiication of the
structure of the equations, since the first decay cross sections cr':l,:' to state §° now
strictly depend in part on the incoming &; In Bq. (11.3.17).

In practical caleulations, the discrete spectmim of energy levels is only compre-
hensively known at low excltation energies. Above those energies, we have to rely
on some estimates of the average level densitles for elgenstates of each compound
micleus. In the spectral region € = ¢ above where discrete levels are known,
we approximate the level density by a continuous function. In this region, sums
over open channels & may be estimated by a sum over the discrete quantum num-
bars {Iym}+ of integrals over the excitation energy using the level density. This
level density will depend on excitation energy e, spin Iy and parity r as. saw,
D™ = pale, I, m), in units of MeV ™~ The denominator in Bq. (11.3.20) Is thus
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rewritten to Include integrals

Egri=lEa e—igt”

]
ZTEH:'SN Z ']':3.'.':'54— Z f ?_i:m""ff.-.-arf.-.-e:.-.-}:ﬁPld("-:t"":lrt"":?rt"")dft""
B B Lo o Ea
(11.321)

up to the highest possible excitation energy of an open channel. We discuss In
Bection 114 how to estimate the level densities.

The final distribution of residues will consist of nuclei in their ground states, or
pathaps in isomeric states. For specified final muclear states { 8¢}, the cumulative
cross section is

oo =3, 3 of, (11.322)
a=0ge{g;)

which Includes a sum over all amitted particles during the decay sequences.
The energy spectrum of speciic emitted particles p may be calculated. As a
function of energy A%, it iz a cumulative sum of terms that select the specific out-

(030 (0,20 (0’ (o)

JiW i

<

d Ay

Fg 114 WMulti-stage decay processes may be modeled with the Hauzer-Fezhbach theory,
following an initial reaction of neutrons incident on #X. The initial compound nueleus is
#+1% on the right, which may decay by emizzsion of 1, 2 or 3 neutrons to the melsi to the
left. Figure courtesy of Erich Ormand.
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going kinetic energy:

EN=3% 3 Bggoy U (11.3.23)
n=l 8 g g =cu 5,
r=2'+y

By using Hauser-Feshbach models we therefore have, as fllustrated in Fig. 11.4,
a theory of the Initial production rate given by al®) aswell as of all the successive
decay cross sections o) of a compound nucleus involving the emission of % par-
ticles or photons. The theory may include known discrete levels at low excitation
energies, but at higher excitations It must average over energy Intervals containing
ANy resonances.

In practice, the dependence of the transmission coefficlents on the projectile
spin is usually ignored, as polarized projectiles are not under consideration. In this
simplified case, we should average Bq. (11.3.18) over the J; quantum number, and
keep only the L dependence.

The Hanser-Feshbach metheod iz Implemented systematically in the codes
STAPRE [16], EMPIRE [17], and Tarys [18], all of which are publically available.

11.4 Lewvel densities

As well as the optical potentials, a key ingredient of Hauser-Feshbach models are
the level densities, as these are nesded at high energies, including above particls
emission (brealup) threshelds. Tust above the threshold, measurements of low-
anergy scattering can be used to determine the spacing Dyn of individual s-wave
msonances up to several hundred ke, until the resonances overlap too much. For
neutrons, such measurements can only be accomplished with stable target nuclai In,
for exarnple, time-of-flight experiments. For higher energies, and for all unstable
muclel, discrimination of individual neutron resonances iz almest impessible, and
theoretical estimates must be used.

Level densities may be calculated microscopically by the shell model in light
muclel for excitation energles up to several tens of MeV, or by the more general
Monte Carlo shell model [19] for somewhat heavier nuclel More simple estimates
may be obtained by combinatorial analysis of single-particle coupling combina-
tions [20], and the moest simple methed is to use Fermi gas approximations as first
mggestad by Bethe [21].

A simple ansatz iz that of the back-shifted Fermi gas [22], which introduces an
empirical energy shift into the Fermi gas model to include the effect of the pairing
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correlation energy. The level density In this approach Iz given by

AT eep 2yfa T

12%{“ FiBfd ’

Prefgle) = U =e— f,, (L1.4.1)
where Ay Iz an adjustable back-shift independent of excitation energy e The
level-density parameter ayg iz standardly taken near ayy = A/8 MaV—1 for nu-
clel of mass number A, and the back-shift parameter 1s most simply near Ay, =
13/ 4, taking the plus sign for even-even nuclel, the minus sign for odd-odd
miclei, and Ay, = 0 for odd- A nuclel

In order to describe the dependence on compeound-miclens spin I, and in partic-
ular the lack of states for large I, It is commen to Include a Gaussian cuteff factor
of width agp.:

Fie I = E# e —I(I-H-) . (11.4.2)
1 Qgszpc. A 2T QG'EZPE.

The spin cuteff parameter ggpe can be chosen in propeortion to the average angular
momentum of a rigid body:

Mga [T
szpc' = Ip;g a: (1143

using a moment of inertia Ay = %muﬂﬁ‘%_ Hare tha surfaca rading is Hy, and
111, 12 the atornic mass unit (1 arom).

Including alse a factor 1/2 for an equiprebable distribution over parities, we have

1
o (€ T} = GF (€, Toot ) et (€] (11.4.4)

Improvemments on this back-shifted Fermni gas model are necessary at low excita-
tion energias, bacausa the above formoulae diverge when € 2 & as then I7 — 0. The
simnplest solution 1z that of Gilbert and Cameron [23], who at low energies match
Eq. (11.4.1) onto a level density for constant termperature

ol T) o exp(e/T)/T, (1L4.5)

by requiring continnity of the level density and its derivative at the matching en-
argy to fix the ternperature 1" and the matching energy. The remlting level-density
curves for 7 Zn and *¥Zn are shown in Fig. 11.5.

All the level density parameters may be fine-tuned to reproduce known excita-
tion spactra and s-wave resonance spacings Ly where these are known. Forunsta-
ble nuclel, where default parameters have so far been used [24, 25], we expect that
these Fermi gas models will eventually be superseded by the results of micrescoplc
methods, either from the shell model directly, or from Monte Carle simmlations of
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the shell-model partition functions at finite temperatires. The more microscople

models will especially correct the assumption of equal distributions for each parity,
an assumption that becomes less accurate towards the driplines

11.5 Average amplitndes and the optical model
11.5.1 Sources of the optical potential

The larger part of the optical potential is the real part from folding the nucleon-
muicleon forces over the density distributions of the interacting bodies. Thiz 1s the
folding procedure described in Section 5.2, The smaller part of the potential, but
no less significant, is the dymamic polarization potential (DFP) that comes from
all other processes. The main component of the DPP is the imaginary part arising
from the absorptive effect of channels not explicitly included in the direct-reaction
model. For a one-channel model, that refers to all the non-elastic channels.

These omitted channels are of two kinds — they may be further direct reaction
channels, or they may Invelve compound-nucleus production. Cther direct-reaction
processes cbviously remove flux from the elastic channel, but so deoes the excita-
tion of CM states. Thiz iz because then a fraction of the inital wave packet is

10 . . .
—— "7n: obeamed levels ,/'
—-—  Gibefd-Camemnfit to O, 7
— —- ®7n: obeamved levels ,°
oL Gibert—Camemon fit to O, e .

Level demity (hey™")
,

—
()
T

1 . - !

Excitation enengy [hieh')

Fig 11.5. Level densities in *°Zn and %" Zn. The curves becoming flat at high energies
are the cumulative count of the obzerved levels, of which there are just over 100 in each
micleuz The rizing lines are plots uzing the Gilbert and Cameron model fitted to the 225,
the s-wave rezonance spacing at the breakup threzhold, and fitted (approximately) to the
expernmental curves at low energies. We zoc that the back-shift Ay, differs by ~1. 5 MeW
for theze two nuclei.
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ternpeorarily captured for the long lifetimes of the CN states, and then released in-
coherently at a later time. Ewen if it is released back to the elastic channel, the
affect on a short-duration wave packet iz the same as absorption. The optical po-
tential iz defined as that which reproduces the prompt scattering in a ghven modeal
space.

Crne way of delineating prompt scattering Is to consider a wave packet with a
wide energy spread, according to At - AR -~ . The scattering amplimde of a
coherant wave packet Is the average amplitude over the energy range, not the av-
erage cross section. Since the optical potential is defined as that which reproduces
the prompt scattering, the scattering amplitudes from the optical potential will be
the energy-averaged amplitude of exact scattering. This average amplitude for
scattering will Invelve cancellations over any narrow resonances, as the 5-matrix
element (the asymptotic amplimde) changss In phase as 2% and the average will
be reduced in amplimde as if absorption were present. The flux that does eventu-
ally return Inceoherently to the elastic channel is called the compound elastic crass
section, and has been evaluated by the Hauser-Feshbach theory of the previous
saction.

Thus we now come to the question of how to derive from first principles the op-
tical potential itself, as distinet from fitting to data, when we have neglected direct
rzaction channels, neglected (or averaged over) compound nucleus resonances, of
both.

11.5.2 Effects of neglected direct-reaction channels
Whenever the Hamiltonian couples elastic to non-elastic channels, the elastic scat-
tering will be changed. To get a one-channel medel to reproduce the new elastic

scattering (affected by couplings), we should have to medify some of the poten-
tials in the elastic channel. The Green's function method can be used to show

that the effect of specific reaction channels can be equivalent to adding a dynamic
polarization potential to the elastic channel
Suppose we take a schematic palr of coupled channels
1+ U1 — Bl R) 4+ Vigte(R) = 0
[Tz + 2 — Bxifa(R) + Varsa(R) = 0, (1L5.1)
then we can formally solve these equations using Green’s function methods to find
the effective equation for 4f; alone. We find

(T3 + 7 + Vi GF Var — B la(R) = 0. (11.5.2)

Here we uze the distorted-wave Green's function forchannel 2, ég- =[£ -1 -
073 =1, with the netation of Bq. (3.3.10). This implies that the scattering in channel
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1 s not governed purely by U7y, but by an additional effective potential 17, @;VM
that depends on energy (£%) and is non-local Thiz additional part is the dynamic
polarization potential (DPF) :

Vopp = WG Vo, (11.5.3)

and its effect 1s to change the elastic scattering from that caused by ©7; alone. The
dynamic polarization potential will have an imaginary part that reflects the loss of
flux from channel | inte channel 2, and will also have a real part that may medify
potential barriers and hence any low-energy tunneling probabilities.

This illustrates how coupled-channels calculations may be reduced to a one-
channel problem, by building all the coupling effacts into an extra term In the
single-channel Hamiltonian. This extra term appears in BEq. (11.5.2) for the channel
1, because we have neglected to explicitly coupls to the direct-reaction channel 2,
and the operation of thiz extra termn on the elastic-channel wave function 4, (H; )
can be written with expliclt coordinates as

Voppths = Wz GeVarth
= Viy(R) f Go(R, B By)Viy (RYH(R)AR,  (1L5.4)

whare Gz( R, R') is the Green's function kernel for propagation in channel 2 at
anergy By, We see that Vppp Iz not simple. First, it is non-localas B # R 'In
the Green's function. Second, it iz energy dependent as &y depends explicitly on
the channel 2 energy £, and, third, it will almest certainly depend on the elastic
partial wave |o) = |LI J L Jy o). This last dependence may be an I-dependence
of a parity-dependence, or something more complicated.

The effects of non-locality may be estimated by the Perey-Buck procedure [24],
or by finding what iz called the twiviaily-equivalent local potential (telp) If the
coupled-channels selutions b, are all knowin:

Viap(E) = Vigthe (F) . (115.5)

Wi )
This Vi (F) will have imaginary parts that are both positive (emissive) and neg-
ative (absorptive) at different radii, but the total change of elastic flux should be
a removal Since the Vg, will have poles where the elastic channel has a nede
() ~ 0, a welghted equivalent local potenticl (welp) 1s sometimes calculated
[27] by averaging Vieip( ) over all partial waves with weight factor 4f1( B)*, giving

T Sttt W) Ve Y ( F)
. .
2T R (HY|E

Vol B) = (11.5.6)
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Fig 11.6. Left: Data for the ¥ Cald,d) elastic scattering compared with calculations in-
cluding no coupling (dashed curwe), deuteron breakup only (dotted curve), and deuteron
breakup pluz (d,t) and (d,*He) plckup (zolid curwe) [28]. The dot-daszhed curve gives the
result for the J-weighted & matrix from the full CRC calculation. Right: Comparing the
bare potential (zolid line) and the two imerted potentials, with the real part in the upper
panel and the imaginary part below Reprinted with permizsion from M. Eeeley and R 2.
Mackintozh, Pl Rew C 77 (2008) 054603, Copyright (2008) by the American Phyzical

Society.

i e Is the elastic channel This expression does aveld zero denominators as it is
extremely Improbable that all partial waves pass through zero at the same radins.
The real test of any of these potentials averaged over partial waves, however, 1s how
well they reproduce all the partial-wave 5-matrlx elements, and henee the angular
distribution for elastic scattering. For this reason, the optical potentials are often
best found by fitting tothe elastic S-mmatrix elements or angular distribution. Figure
11.6 shows recent results for the effect of proton- and nentron-plckup channels
on the optical potential for deuterons incident on 47 Ca at 52 MeV. Obtalning the
optical potential from the S mmatrix 15 often referred to as the Inverse method and a
racent review can be found in [29].

11.5.3 Effects of neglected compaund-nuclens channels

We will now find the contributions to the optical potential that arise when we ne-
glact (or average over) compound-nucleus resonances. This 13 done by asmuming
that we can average S-matrbx amplitndes over an energy rangs that inclndes many
resonances. Thea resulting averaged 5-matrix element is that which should be given
by the optical potential, so

S =Sa (11.5.7)
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averaging over some defined energy interval T We hence talk about optical aver-
age S-matrix elaments.

Consider the case of low-energy scattering In which there are many prominent
CM resonances, typically at energles below | MeV for neutrons, as above thiz en-
ergy they become broader and overlap more. MNow we do not averags the cross
sections as in Saction 11.3, but average the scattering amplitudes: aither the whela
wave function or just itz asymptotic coefficient the S-mmatrix element. Let us aver-
age these complex functions over an interval T that iz much larger than the aver-
age level spacing D, which In turn iz assumned larger than the average width {T').
That Iz, we deal with non-overlapping resonances, and assums that the Coulomb
functions (the shift functions and penetrabilities) do net vary significantly over the
energy interval .

First we define an optical average S-matrix element as § = (8) by

S(E) = de’ FlE—E) S{ £ (11.5.8)

for some smoeothing funetion ALY, Originally in Bg. (11.3.1) we used a square
step function, but thiz now gives Insufficlently smooth effects as particular reso-
nances enter or leave the interval An alternative suggested for this purpose by
Brown [30] is to use a Lorentzian smoothing function

I 1

T AET + T
where now 27 is the full width at half maximnmm This shape will be seen to yiald
2 mathematically simplaer conclugion than for the square step.

FlAR) = (11.5.9)

Averagead S-matrix elements

Any smeothed optical S does not itself give an average elastic or average reaction
cross section after Integrating owver many resonances, since these are quadratic In
8. But it does give the average total cross section op of Bq. (3.1.50), since this is
linear in 8. More specifically, since

o
or = 7 > Ghal(l — ReS), (11.5.100

t ewt
i —
wa have Tp = = Z 5.1 — ReS) = or(opt). (LL.5.11)
t ewt

The reaction and angle-integrated elastic cross sections are however quadratic in

5:

T o
TR= 13 > 95, (1— [8]F) and oq = = > Gaa 1 —S[F (11512

LR LR
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Since 1 — |S|2 =1 - |8 — S| — 2Re(S — §)8 — |S|?, the average reaction cross
section containg the factor

1-IS|E=1-[S|F - |S - 5|z (11.5.13)

Fromm thiz, we find that the energy-average reaction cross section differs from that
calculated from the optical potential according to

TR = OR(0P) — oy, (11.5.14)
where
=53 n.I8-SF (11.5.15)
BE
ok T

is the fluctuation cross section that depends on the variance of the § matrix about
itz mean as we vary the energy across the resonances. Similarly, we find that the
average elastic cross section differs from that of the optical meodel as

Tal = Tal(opt) + o8, (11.5.14)

FPhyysically, oy s the compound elastic cross section mentionsd previcusly: that
flux which comes back to the elastic channel after the decay of CN states. It en-
hances the elastic cross section over that predicted by the optical moedel, but this
does not Iirvalidate the optical medel because it is produced after a time delay and
1z quantum mechanically incoherent, and hence simply adds a symmetric back-
ground to the elastic cross section. Tt reduces the reaction cross section from the
optical prediction, since it describes flux that does net, after all, leave the elastic
channel.

The Hauser-Fashbach approach may be regarded as producing an approximation
for the fluctnation commponent for amy S-matrix element, namely

TaTa

|Sa o Sa al Woe = —
T T

(11.5.17)

Avergging and complex energles

Suppose that we had 2 microscople theory or mnlti-channel R-matrix fit which
describes all of the CN resonances in the energy Interval T of interest, and then we
averaged the S matrix ovar the resonances using the Lorentzian smeothing kernel
cf BEq. (11.5.9). We start from the multi-level Brelt-Wigner formula (11.2.3) for the
S moatris:

Sl B) =0, Mf+1z bl (11.5.18)

E——I‘ faa
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If we average over a suitably small interval Z, we may assume that the 0, and ',
ara constant, as discussad earlier, so the essential averaging intagral is

— = I 1 o
&= — d&" 11.5.19
_£ T(E— £+ I Bp—Tp/2- £ ¢ )

for some mumerator cp. The poles of the integrand are at £ = £ — 1'5/2 and
£ = F+1T. We may complete the integral in the complex £ plane by continuing
it with a semicircular loop in the uppar half plane which ancloses the pole at £ =
£ 41T The residue at this pole is ¢/ [Bri( £, — 1T, /2 — £ — 1T)], 50

= p e
&= 11.5.20
E,— T, /0— E—1T  E,— B—iI ( )
az I Ip /2
The Lorentz-smocthed S-matrix elemnent hag in general the simple form

Sl B = Sl E + 1T), (11.5.21)

showing that this soothed 5 matrix can be very conveniantly found by an analytic
continuation of the scattering to a complex energy. This applies to all scattering
functions S{ A7) which have peoles in the third quadrant, which correspond to CIW
resonances with positive widths. It is therefore expected to be true, even for over-
lapping or dense resonance spectra, that the averaging interval I adds 2¥ to the
CN width I, and spreads cut all the resenance strengths over the whole averaging
Interval. This tells us that we can find the S matrix to be obtained from the optical
potential by evaluating the 5 matrix from a micrescopic model at some complex
energy £ + 1T.

Substimting BEq. (11.5.18) inte Bq_(11.5.21), and approximating Zp by % [ dF,
where I Is the level spacing assumed to be small and the I' oy are assumed to be
constant, we find

Saal B = 0, laaar -I-l d £

?’EEJI

G!

(B, — B) +iI

= c,t |: el +l"n,.-'I f F(E E)z +I2:| ﬂa"- (]_]_.5.'2'2:)

The real part of the £ integrand is odd about £ and its integral should approx-

imately cancel, whereas the Imaginary integral has a value of w. This ghves the
energy-averaged

B3|

U=

Su( B & (e [ S ) ]ﬂar. (11.5.23)
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Af low energles 0, == 1 as ka <€ 1, so the average elastic 5-matrix element iz

S 5 Til'a)
L

Soal &) =21 — (11.5.24)

which agrees with the result of Bq. (11.3.8), to first order In w{T',) /1.

Averagad CN polarization potentials

As well as averaging the S-matrix elements by S (£ = 8 (B +1T), we could
dlso simmilarly average the dynamic pelarization potential (DPF) that comes from
the couplings to the compeound nuclens states. Let us generalize the definition of
thiz peolarization petential from Eq. (11.5.3) to use a Feshbach projection opera-
tor P for the direct reaction channels and ¢ for the compound-nucleus channels,
with F + ¢ = 1. From the full Hamiltonian H, the CN sector iz governed by
Hpg = QHG and the couplings betwaen CIN states and direct reaction channals
use Hpg = PHG).

We now caleulate the average DPP by evaluating it for scattering at a com-
plex energy £ + 17, A complete sst of CN states is taken to be |£) satisfy-
Ing Hog|by) = Bp|fp), and the sum over these iz (as above) approximated by
2oy~ 1 f B, On this basis,

—_ 1
VorR(E) = HPO g T Hag O
1
= ZHPQ|Ep}m{Ep|HQP
o 2
1 1
= EdepHPQ|Ep}m{Ep|HQP

1 (B—Bp) — 1T

= — [ dfHpg|Ey) — 2 (B |Hgp. (11.525
Df k= P'-'-?l F}(E_EFJZ_I_IZ{ ‘Pl QF I:- ;I

We might assume that the coupling openriors Hpg to the CN states do not them-

selves vary significantly over the energy range I, so that all the resonant peaks

arise from the Breit-Wigner denominators (£— £)% + T%. In this case we could

approximate the imaginary part of Vopp( &) by

1 -T

1 -T

= —%HPQlEHElHQP. (11.5.26)

Fromo this expression we see that the contribution of the CN averaging to the direct-
rzaction optical potentials is to give a negative-definite imaginary componant.
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Fig 11.7. Comparizon [31] of the actual total cross section oy, [with rezonances) in units
of barns, with the Lorentz -averaged total and reaction cross sections that can be reproduced
by the optical potential Reprinted with permizzion from T. Kawano and F H. Frdhner,
Muel Sei Erg. 127 (19973 130, Copyright (1997) by the American Muclear Society, La
Grange Park, Illinoiz.

We cannet make such an appresimation for the real part since the £— By factor
mmeans it depends more on distant than on nearby rescnances. We might therefore
expact the real part to average near zero when the level density for compound-
muclear states Is approximately equal above and below £, except perhaps at the
lower end of an energy spectrum where eigenstates are no longer equally dense
above and below.

Fitting averaged S-matrix elemenis

Bometimes we do not have a microscopic theory or detailed R-matrlx fit to the
msonances In neutron-nucleus scattering, but do have an accurate experimental
specttimn for the total nentron cross ssctions op £7). This does constrain the optical
S moatrix at least for the elastic channel. From the neutron data we can calculate
o £ by (for example) Lorentzian averaging with width 7. Thiz gives the smocth
function of energy shown by the dashed line in Fig. 11.7, which at low energles
15 directly related by Bq. (11.5.11) to the real part of the 8(ept) from the optical

potantial.

Exercises
11.1 Find the experimental spacing Dy of low-energy s-wawve resonances for a nuclens
of your choice listed in the RIPL-2 databaze (URLwwnar-nds. iaea. orgiipl-2).
How well iz thizs 225 predicted by the global level density exprezzion in section
11.47 What iz the best refit of the parameters to reproduce the obzerved D7 Plot
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11.3

11.4

[1]
(2]
[3]
[4]
(5]
[a]
[7]
[8]
(9]
[10]
[11]
[12]
[13]

[14]

Compound-ruclews averaging

the resulting lesel density against the cumulative integral of discrete levels from
the RIFL-2 databaze. Fit a conztant-temperature level-density expreszion at Low
energies following Gilbert and Cameron. Does this improve the agreement with
the dizcrete level integral ?

The strength function for neutron resonances is the function {T'h /2 az a function

of energy. Usnally we plot Sp—g = %/ D/ By f B to remove most of the energy
dependence, where £ = 1 &V iz an arbitrary energy. Show how meazurements
of the s-wawe strength function 5, constrain the optical potential up to 1 MeW
For a chozen nuclens, test the accuracy of some neutron global potentials.

Uze the global level-denzity exprezsion: and a randem-number generator to con-
struct a hypothetical (n,) spectrum of 2 new radicactive nucleus from O to 1
ke Assume that the photon width ', iz 30 meV, typical of heavy nuclei, and
the nevtron reduced width haz a mean value of 1 £V and follows the Porter-
Thomasz distribution for the one open channel. Conzider neutron channels only
for L = 0. Use a Wigner probability distribution for the lewel spacing: pls) =
w5/ (20 expl(—w{ sf 212 /4). Compare with the shapes of experimental (o) re-
sultz on nearby stable nuclei that have been measured in time-of-flight experi-
ments.

Izomers have been proposzed az a poszible means of storing energy. Consider a=
a poszible neutron trigger of a Y™ Hf izomer the 167 state at 2447 MeV. The
inelastic outgoing channel for a nevtron may have more energy than the elastic
channel: thizis called “superelastic zcattering,’ or “inelaztic nevtron acceleration’
It has been proposzed that 100 ke nevtrons could trigger the release of inelastic
nevtrons with more than 1.5 MeW kinetic energy. Examine the spectrum of H
to determine poszible final states in such a reaction, and the neceszary exit par-
tial waves, Usze a global nevtron optical potential to determine the franzmizzion
coefficients for exit neutrons from an initial 167 compound state of ™ H{*. By
uzing a photon width of I, = 30 meV (standard valus for heavy nuclei), and a
zlobal level density for ™ Hf*, determine the branching ratio for superelastic neu-
tron emizzion in competition with (n) decayz. Use Eq. (3.1.114) if neceszary.
Aszess the feazibility of the HY izomer for thiz kind of energy storage.
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Stellar reaction rates and networks

I found that the best ideas usnally came, not when one was actvely striving for them,
but when one wazin a mors relaxed state.

Faw! Dimc

12.1 Thermal averaging
12.1.1 Reaction rates {ov) and lifetimes

The reactions that we have discussed so far all have cross ssctions of £7) that de-
pend strongly on center-of-mass energy £ This dependence may be because of
a repulsive Coulomb barrier, so that of £) = £~ exp(—2mn) S £) for an ‘as-
trophiysical S-factor’ S £ that is relatively less variable with energy. It may be
because neutrons have a o £ o 1/v behavior for projectile-target relative veloe-
Ity ¥ near zero. Or it may be because of resonances giving sharply peaked cross
sections, like T'/[( £ — £'g)* + ' /4] for a single resonance centered at Fp with a
full width at half maximum of I'.

In a stellar plasma of a mixture of two or more nuclear species, there will be a
considerable range of relative energias £ (or, velocities +) because of the statistical
distribution of thermal energy ameong all the particles in the plasma. The actual
rate of nuclear reactions will therefore require an averaging of the cross sections
ol £ over the thermal distribution of relative energies. We will therefore define an
average regction wete as the number of reactions per second per unit volurne, and
find an expreszsion for this in terms of o £7) and the distribution ¢(v) of the relative
velocities of the interacting particles.

Reartion rates

Let us consider two nuclear species 1 and 2 1n a plasma, with mumber densitles 21
and 72z particles per unit velume, respectively. For a specific relative velocity v, the

332
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flux of particles 1 (considered asthe projectile) will be
3 = m1v particlesfunit area‘unit time. (12.1.1)

Mow the cross section o iz the frequency of acattering per unit incident fiux, for
a single target. So the scatterings per unit time will be of = owyv for one target
micleus. So iz, the total reaction rate per second per unit volume, will be this
expression times g, the number of particles 2 (considered as the target) per unit
volume:

13 = T21TRz 0. (1212

In a plasmmoa, if the distribution of relative velocities 1s given by (v normalized
to unity as fnm @v)dy = 1, then the average scattering rate will be proportional to
the integral

{ov) = -ﬁm ol B plwiudy (12.1.3)

callad the reaction vate per particle paiv. In a given plasma, the net reaction rate
will then be

r1z = m1rz{ov).

This forroula needs one medification, should particles 1 and 2 be identical In this
case, the number of distinet particle pairs is not w%, but rather %n% and so a factor
of 7 must be Introduced to avold counting each pair of particles twice. This factor
mmay be introduced formally into the above formmla as
1
T
where d1; = 1 If the particles | and 2 are identical, ctherwisze zero.

In the integral (12.1.3) defining {ow) the integration starts from zero for exother-

riz nynz (o), (12.1.4)

mic reactions, but for endethermic reactions that absorb energy the integrand is
zero for velocities too small to reach the threshold in relative energy.

Decay lfetimes
Resonances and unstable nuclel will decay spontanecusly, with some lifetime. If a

resonance pole is at a complex energy &' = £p —{0'/2, for example, then the time
avolution of the resonant probability follows the square norm of the wave function

|'§.|5'|2 o |E_¢Etl,.-'ﬁ,|2 — |E—£E_qtl.-"?i|2 |E—I'tl.-"2?i|2 — E—I‘tl.-"?i, (12.1.5)

which corresponds to

d r
d—? = —An(t) for a decay constant of A = 7 (l2.1.4)



334 afellar reaction mies and Rebworis

TIts half-life iz

ik
=—==In2 12.1.7
T ( )

B3|
=

12.1.2 Maxwell-Boltzmann distributions
In the environment of a stellar plasma, the particles can be described by non-
relativistic kinematics except at the very highest temperatures. We consider first
the case of non-relativistic thermal equilibrinm, according to which the statistical
distribution of velocities is governed by atemperature T according to the Maxweall-
Boltzmmann distribution. According to this theory, the distribution of absohite ve-
locities v of species € In a thermal gas iz given by

k]
Mg 42 Tl
Oyl vi) = — T 12.1.8
(Ve (gﬂﬂ) e:-rp( zsch)’ (12.1.8)

where kg 1s Boltzmann's constant, v; = |v|, m; Is the mass of particle ¢, and this
distribution is normalized for the three dimensions of velocity according to

f@(v)dv =1, (12.1.9)

The mean particle energy 1s &gT, and the number density of particles ¢ per unit
volurne of ‘velocity space’ Isthus 72,350 vy ).

Remernber that @ in Bg. (12.1.2) iz the relative velocity v = |v1 — v, so the
Integral (12.1.3) for the reaction rate per pair of particles mmst be calculated as

(ow) =ff'f”:£::' [vi—vz| Pa{v1)Pz{ve) dvidve, (12.1.10)

where the relative energy & = % ,u:n|v1—vz|2 using the reduced mass gz for
collisions betwesn particles 1 and 2. We now evaluate this expression using the
Maxwell-Boltzmmann distribution of Eq. (12.1.8).

In terms of the relathre velocity v and the velocity of the center-of-rass 'V of
particles 1 and 2, the Individual velocitias are

Tilg

vi=V4+ —= v
Tl + iz

v, = V1 (12.1.11)
T + iz

When we multiply ©90vq)Pz(v) In Bq. (12.1.10), the exponents have a factor
which may be rewritten

1 1 1 1
Eml«uﬁ + Em;’u% = 5(m 4+ mg ) VE 4+ E,u,m?-, (12.1.12)
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where the first term on the right iz the energy of metion of the whole center-of-
mmasg, and the second term iz the relative energy £ defined above.

Since the cross ssction of &) only depends on £ and net on the center-of-mmass
motion, we should transform the integral (12.1.10) to separate the relative and
center-of-mass motions. Using the unit JTacobean of the transformation (12.1.11),
the differential may be transformed using dv,dv; = dVdv to give

3
1y + (1 4+ g )V E
v IS LT A
o= f [ { () o (- |
2 z
iz izt
8 [(Qﬂ'ﬂch) P (_QkET)

The first factor {-} describes the Maxwell-Boltzmann distribution of the whole
center-of-mass of the two particles, and the second [ ] factor describes the distribu-
tion over their relathve velocity v. The integral over ¥V may be done immediately,
and gives unity by Eq. (12.1.9). The reaction-rate integral therefore simplifies to

H 2
(o) =fU(E)ﬂ (ﬁ;jﬁ) exp (— ;;;ﬁT) dv. (12.1.14)

We can also integrate analytically over the angle ¥, leaving

dvdV (12.1.13)

2

— w8 _Haz 43 _#1?.1"?'
{ou) —441'-[0 v ol A (Zfrr.ich) e:-rp( %ET) dv.  (12.1.15)

Comparing this with (12.1.3) shows that @(v), the distribution of relative velocities,

iz
2 2
gt [ FA2 _paxt’
@lv) = dry ( Fs:gT) exp ( Qﬂch) . (12.1.14)

Transforming the variable of integration to the energy &, we have

(o) '!mm(kaT f Eo(B) exp (kT)dE (12.1.17)

The integrand Eol{ &) exp(— £/ k5T 1z sometimes called the Gamow distribution
function, and shows how the energy dependence of the cross section iz welghted
by the thermal distribution of energies to give the reaction rate. If we replace the
cross section by the astrophysical S-factor, the above integral becomes

Eg
. ) dE. (12.1.18
o) mn(sch f (£) E:‘P( keT E) ¢ )

where the energy constant is Kg = drint B = Sz e ezjzfﬁz.
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12.1.3 The Gamow peak

MNote that exp(+/ £ig /£ 1s small at low energles, while exp(— £/kgT") is small at
higher energies. As Fig. 12.1 shows, the product of thess two terms gives a value
for the integral which has a peak, called the Gamow peak, at an energy £ where

1
EG-EC IS
Ep = (TS . (12.1.19)
which iz known as the effective burning energy.
0.04 : :

kT

N ---- thermal Eexzp-E&T)

rA E —-— barier expi-{E#E'")

1o [ —— Gamow detrbution
ooz b A
£ !
s
= H A
z ! 7
£ 1 7
M opoz 7 .
g | .
= i
_E ]
i i
g oo .

0
1.5

Energy [abitrans unitz)

Fig 121 Dependence of the reaction cross section for charged-particle reactions az a
function of energy (arbitrary units).

The width A ofthe peak about this effective burning energy can be estimated, if
S8 Iz azsumed to be constant, by approximating the peak as a Gaussian funection

z
_ (Eﬂ}fﬂ) ] , (12.1.20)

£ Ea et I

whers

_ 30
= exp (_s;:;TT) . (12.1.21)

Im [==1

Differantiating (12.1.20) twice, the width A is found to be

23E

4 1 4 1 ]
A= (EpkgT) s = ﬁEg(kBT)s . (12.1.22)
32 R
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B Eg

kgt £

Using (12.1.18), an approximation to the integral is
4 35
AE % I = = (EpkgT) % acp (——D) .
33 kgt

| e
(12.1.23)

Muclear reactions cccur mainly in the ensrgy region straddled by the emersy
window defined by

E=fp+ % . (12.1.24)

This energy may often be too low to measure the reaction cross section directly
in the labeoratory, so one typically finds S A7) over a range of available lab energles
and then extrapolates down to the region around Ay.

Using the approximation given in Bgq. (12.123), if the S{ A7) iz approximmately
constant then the non-resonant reaction rate per particle pair can be estimated as

2%v: A 3B,
w2 S(E s 12.1.25
) (#) (k5T “jexp( FﬂaT) R

H the S-factor varies significantly around the Gamow peak, then we may expand
it in a Taylor saries about zero ensrgy up to the quadratic term
1
S(E) = S(0) + £ 57(0) + EEZS”(D). (12.1.26)
In terms of these derbvatives, the S{ &) in Bg. (12.1.25) can be more accurataly
replaced at £y by an gffective S-factor of

kgt
3647

35 1 8BS
) S0+ (E};.-I—EkET) S0+ E’:Eh (Eh-l_ﬁkET) S0,
(12.1.27)
and further approximate forms are discussed In [1]. Seme of the reaction rates cal-
culated from the cross sections adopted by the NACRE compilation [2] are shown
inFig. 12.2.

S = (l-l—

12.1.4 Averaging over resoRances

The cross saction for a single Breit-Wigner resonance cross section from Bq. (11.2.4),
i substituted in the formmla of Bq. (12.1.17) for the reaction rate per particle pair,
givas

omht SR O £
afe = 4 T e B ——— | d&,
(o)t = | kT, (E—EPJMP;MW( kET)

(12.1.28)
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Fig 12.2. Reaction rates for four processes starting with "1i. These are the adopted reac-
tion rates from the NACRE compilation [2]. The exothermic reactions (¢ = 0) have much
larger rates at Low temperatures, and endothermic reactions are only significant abowe a
IMIIIIMUM temperature.

for the cross section from incoming channel o to outgoing channel o' Remember-
ing that the widths Tap = 2%, F2(£) include the Coulomb penetrability, we see
that this integrand has two peaks: one near the resonance energy £, and the other
near the Gamow peak. If these are well separated then thelr contributions may be
found separately and simply added. The dominant contribution will typically be
fromm the resonance energy, giving a reaction rate per particle pair of

5
_f 2 e Taplag B
{gﬁ}afa_(#nkgiﬁ) 8o Tp P _Fs:BT - (12129

When a narrow resonance iz near to the Gamow peak, then combined formulas
may be useful, as suggested by Ueda et @l [3]. For wide resonances, however,
there Is no substitute for mumerical integration of BEq. (12.1.28).

sub-threshold resonances

Given encugh energy, any nucleus C will evenmally break up into a variety of pairs
A B of clusters. The threshold energies at which these fragmentations begin are
called the various breakup thresholds By, . as at these energles the fragments A and
B have zero relative kinetic eneargles. Anexcited state in the C nuclens that is above
the thresheld will show up as a clear resonance peak in A4B scattering. An excited
state that Is belew that thresheld may net show up as a peak, but may still have an
affect on the A+B scattering. These latter states (mentioned in subsection 10.2.2)
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are called sub-thresheld resonances, and may still have some effect on positive
anergy scattering if thelr widths I'; are of the same order asthelr threshold energies.

Bvery excited state of a nucleus will eventually decay by some means, and its
width Iy Is imversely proportional to thiz lifetime. If the micleus enly decays by
¥ emission, then the resonance lifetime will be long (210712 ¢, its width will be
rather narrow, and it will hardly have any effect above thresheld. If, however, the
sub-thresheld resonance width is larger (because of proton or o emission perhaps)
then the factor of [(£ — &) + TZ/4]~ will describe a high-energy tail to the res-
onance that extends up above the thresheld, into the contimmm. It is then possible
for a fusien to have a large cross section at very low contimium energies because of
the long tail of a sub-threshold resonance. One example of this is the ¥4Nip,y)1*0
reaction, which proceeds strongly because of a mib-threshold resonance at —22
kee¥.

12.1.5 Nentron and phaton reaction rates
Neutron reaction waies

Meutrons do net see any repulsive Coulomb barrier, so there is not a Gamow peak
ag there iz for charged particles. Most low-energy neutron reactions are dorinated
by the s-wave (L=0) entrance channel, so thelr cross sections at low energies are
proportional to +~!. This can be seen from the R-matrix formula, as this is the
dependence of I'( £)/k2, since for s-waves P(E) = ke and the velocity » is
propertional to the entrance-channel wave mimber &;. It can also be seen from
phase shift analyses, as phase shifts go to zero lnearly with & at low energles
according to the scattering length expression of Bq. (3.1.93).

Instead of defining an ‘astrophysical S-factor’, for neutrons we define the alter-
nate function

R(E) = o, (12.1.30)

The F{ L), when far from resonances, Is thus nearly constant at low energies. The
rzaction rate per particle pair is hence practically constant in the non-resonant re-
gions:

(o) = R{A, (12.1.31)

avaluated for any energy £ below the lowest resonance. For reactions in higher
partial waves (L = 0) there will be some energy dependence, but much weaker
than with the reactions of charged particles.

When neutreon resonances can be be Individually enumerated, swe should inte-
grate using Bq. (12.1.28). In heavy miclel, where the level density of resonances is
high, the statistical Hanser-Feshbach methods of Chapter 11 can be ugsed. In that
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case, the average ratio of level widths to level spacings 1s found using the Imaginary
part of the neutron optical potential, as explained in Section 11.3.1

Phato-mucleny veaction rates

When one of the interacting particles iz a photon, then the relative velocity [vi— vy
will always be ¢, and the energy for the evaluation of o( A7) will be the photon en-
argy £y Inthe integral of BEq. (12.1.10), the integral over the particle velocity can
be done immediately, and the other integration variable must now be the photon en-
argy £, . For photo-disintegration we assurne in stars that the number distribution
of the pheotons Is fixed in terms of the temperature by the black-body radiation law,
so the reaction rate per particls palr is now only proportional to the target number
density. The proportionality coefficient we wiite as Ay, and has the same units as
that of a spontanescus decay rate. Its value for a target mucleus called 1 is therefore

Ay = f o € T1{ By ) 124 By} Ay, (12.1.52)

where —&; iz the photon energy thresheold, and o, () s the cross section for
Hargat photo-disintegration, calenlated using Bq. (3.5.23). This applies tothe dis-
Integration into any number (2, 3,...) of particles in the final state. In this integral
we use the mimber density of photons s, (£5) In a thermodynamic environment
at temperature T". The number iz not conserved as for particles, but depends on
the stellar temperature. According the Planck black-body law, the photon number
density per unit energy is
1 12

() = s op(B fiaT) — 1 (12.1.33)

This distribution is #et normalized to unity, becanse integrated black-bedy radia-
tion energy increases in proportion to T4

12.1.6 Inverse reaction rates
For low temoperatures, nuclear reactions with peositive §f-values (those which re-
lecese enerey) are preferred, that iz

1425344 Q= 0. (12.1.34)

However, as the temperature Increaszes, so does the number of nuclel with kinetic
anergies greater than the §-value, and for these particles, the {mverse process can
oecur

344142 g < 0. (12.1.35)
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In order to fully understand and medel the evolution and burning of stars and the
production of heavier miclear species, the rates for these Inverse processes must be
known.

Using the detailed balance property of the $ rmatrix discussed in sibsection 3.2.4,
the forward and reverse cross sections are ralated according to

o1z ki, (203 +H1)(2L+1) (1+612)
Tsa ki, (2LH1)(20+1) (140s4)

where the é-functions are unity if particles 1 and 2 (or 3 and 4) are identical This
iz @ very useful result since it iz often easier experimentally to measure a nuclear

(12.1.36)

rraction cross section in the reverse direction. By using the above equation, one
can directly obtain the reaction cross section of interest.

Since the reaction rate per particle palr can be given by (12.1.17) for both the
forward {ow)1z and the reverse {ov) sy, by the conservation of energy £y = B2+
&), we can write the ratio of reaction rates per particle pair, for ¢} of either sign, as

(o)as (20120 1) (14-8sy) /g B Q
{ovjiz  (2e+1)(2Tz+1) (1+612) (#34) o (_ kgl

) . (12137

This ratic 1s dominated by the exponential term, exp{— & /kgT"), and iz hence a
rather smmall number except at very high temperatures. For example, if ) = & MeV
and 7" = 10" K, then {ov)aa/{ov)1z = 107%

12.1.7 Electron screening

Whether in the laboratory or in the star, nuclear reaction rates are modified due to
the presance of electrons. There are two limiting cases, referred to as weazk screen-
ing and stromg screening. Weak screening [4] is applicable when there Iz a low-
density plasmma of lons and electrons characterized by a Debye radius and when the
average Coulemb enargy 1s much stoaller than the thermal energy. Nucleosynthesis
rzaction rates in main sequence stars are corrected within this picture.

In the Debve approximation, the potential between nuclel with micleon numbers
(A1, Z1) and ( Az, Z;) becomes of Yikawa form:

Z
AL (—rjro),

Vorreen (7] = " (12.1.38)
with the Debye rading being rp = 4/ .— i':I:NA 7> P the electronic density, N 4 the

Avogadre's number and § = 3, [Z( 2+ 1) X /A;] the rms charge of the plasma. If
the fusion reaction happens at distances much smoaller than the Debrye radiug, then
the potential can be expanded to first order and the energy shift from the screened
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potantial compared to the unscreenad potential becomes Uy = —Z,Z.et frp. T
Ty <& A itcanbe shown that in the weak screening case, the reaction rates become
':gﬁ:'vra = fum ':':”-"l.:'mcuum (12.1.369

with a factor f,. = exp[Us /&7

The other screening limit corresponds to a picture where the mucleus Is sur-
rounded by a cloud of uniformly distributed electrons of radins comparable to the
Inter-lonic distance. This strong screening is the typical laboratory scenario. Inthis
case, the medinm iz ne longer locally neutral and reactions take place under the in-
fluence of strong screening [5]. Many astrophysical reactions are somewhere In
between and a mirnber of models have been developed to account for these process
moore accurataly [G].

12.2 Reaction networks

In the previous section we have calculated the reaction rates per particle palr {ow)
by averaging the reaction cross sections over the thermal velocities In a gas. Spon-
taneous one-body decays are characterized by thelr decay constant A In terms
of these quantities and the number densities 2; of the various nuclear species, the
rzaction rates v perunit volume per second are, respactively,

1
T = Ti1Tig Oy
1z 1 +512 1 2': ::'12
T, = —}\1'?2-1. U.?..?..].j

There may also be three-body reactions, but in the expression 13z we should allow
for a general nurnber of identical pairs. For two-body reactions let us define the
murnber of distinet particle palrs per w7y as

1
Cop = —F— 12272
Tk 1+ 5_7':%:! I:. ;'
and for three-body reactions the mimber of distinet particle pairs per s2,92,72; as
1
Chigg = B for one identical pair ameng F&i

4

= 3 for all 7&{ identical (1223

1221 Coupled rate equations

We now find the gfects of these reactions on the number densities of both the
rractants 721, 72z and the products (say vz and n4). To do this, we need to know the
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murnbers of the different miclel created or destroved in each kind of reaction. Let
uz define

N;(7) = number of species { produced by the decay of species 7, and
Ni(jk) = number ¢ produced by the reaction of species j with &,

and Ny(7ki) simnilarly for three-body reactions.’ We take these numbers as negative
i the specles ¢ are comsumed In the reaction. In terms of these parameters, the
general equation for the rate of change of the mirnber densities 1s

% =3 Ny + > NGk e+ > Nk, (122.9)
¥ ik gl
The first termn describes the decay of species 7 into {, the second term describes
the reaction of § and & together where one of the products iz £, and the third term
describes the three-body reaction of 7, &, and { together to produce .
We substiite in Bq. (12.2.5) the reaction rates from Bq. (12.2.1), and, using the
g, coefficients, obtain

i Z Ni(F)2gmy + Z Ni(7k)Cpp mymg (O] 5
k] ik

+ > NGk O iy (00) (12.2.6)
Fl
We now rewrite the numbear densities #2; In terms of the fractional nuclear abun-
dances ¥, In order to exclude changes to the #; that come from simply the ex-
pansion or contraction of the plasma. We define, in a given volume of gas, the
fractional nuclear number abundances by

¥; = mimber of nuclel { per number of all micleons. (La2a.m

H each species ¢ has atomic mass A;, then these abundances are normalized by
2. 4:¥; = 1. A gas of purely one species, for example, would have ¥ = 1/4
and, for number density 72, would have mass density p = Amyn = myr/¥.
This implies that 72 15 given in terms of ¥ by 7 = ¥ gy, and for a mixtiure of
severdl species we have n; = ¥po/m, for overall gas density p. We now define
Ny=1 fmu,z so 123 = Np¥ o is the scale relation between mumber densities and

! Thing these {5k} mumbers, we may genemlize the shove ' coefficients for an arbitmry mimber of macting
mclei to
iz
(Cone ) =[] IMe (-1, (1224}
4

whem 5 =1,... .7, i= theindex to the distnct species ¢, among the Fiel, ...
2 N mamees are memwred in gmms, then 17w, = M4, Avogadro's number of 6.022 % 10%% mol—! Fora
omention-free mimber we write My = 1/, which coincides with M4 if cge units are adopted.
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In order to caleulate the Aow around the CHNO cyele of LY SR
Fig. 1.11,we nead
[E"f\']T 1(9.-1']
i} the three (p,y) reaction rate: on X = Lo L5 ay =
and M MN: {ovdp x, .
.. i 1= 15 in,ﬂI l [t
(i) the §-decay mtezfor M and *O: Ay, and _—

(ii} the (p,a) ractionmte on M*MN: {ov)p 15a. =

For total plazma density g, since there are no identical particles or three-body reac-
tions, the coupled rate equations for the abundances ¥ are

Y, = —pNu[¥o¥iefovdpia + Yo¥isc fovdpia

+ ¥ ¥ lovipie + Yo ¥isalovip sl
¥ig = + N[~ Yo ¥z {ov)pine + Yo ¥isa{ov)pasal
Yisa = —AMzaYisa +pNoYp¥iac fov)pia
Yise = +Mza¥isa — oNL YL ¥iac {ovip e
Yidn = + N[~ Yo ¥ida oV} p1da + Ye s {ov) o1 s

1'./].54: = —Ase¥ise + pNo Yol (00 p 140
1./].5:1 = +}"15o}f15o - PNu}fp}flE-n. {W}p,lsu
Yg = +PNu}fp}flE-n.{JU}p,lE-u- (12’2’9}

Here, we hawve not tracked the poszitron: or neutrines, and the photons are quickly
ahzorbed by the plasma electronz. The protons are only consumed by this st of reac-
tiong, and ¢ parficles only produced.

Box 12.1: Coupled rate equations for the CNC cycle

miclear abundances, and Bq. (12.2.49) may be rewritten as

&5 _ .
5 = 2 NlI)MYs 4 pNu Y Ne(iR) Ot VY ()
¥ ik
+O LS NGk Crig YYi Y2 (o) s (12.2.8)
e

which are coupled rate equations that form a reaction network., In Box 12.1 we
show the coupled equations corresponding to the CNO cyele of Fig. 1.11.

12.2.2 Explicit and implicit soluéion methads

Chapter ¢ discussed methods for solving the second-order scattering equations,
whereas here the network Bqs. (12.2.8) are of first order, and in the form dy /dt =
Flw) for a vector ¢ of abundances, where f(p) 15 a non-linear function. The nu-
merical solution of these equations ¢, at times £, may be accomplished by axpliclt
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or predictor Integration algorithms such as

ST — F(ya), (12210
tn+1 —tn
or higher-order forms, such as Runge-Kutta that are more accurate. Methods basad
on Bq. (12.2.10) are called explicit because they vield pnqq directly in terms of the
aarlier 4n. However, if the reaction network containg a mixture of both fast and
slow processes (large and small reaction rates), then the time step £,,, — £, has to
be soaller than the relaxation time of the fastest process. If the full dynamical time
avolution iz desired, then this might be satisfactory, but most stellar evolution is
slow and there is no need to caleulate the physical oscillations arcund the moving
near-equilibria that are not of primary interest.
Practical solutions of stallar networks, therefore, use implicit numerical methods
such as

k] — Yn 1
% = 5 (f(gn+1) + flgn)), (12.2.11)
n+1 £

or more accurate formos such as those used in corrector integration algorithms.
These methods are called Implicit because the unknown 4nq1 appears on both sides
of the equation. Finding ¢n4 1 therefore requires solving a onltivariable non-linear
equation, and this is traditionally dene by Newton-Raphson schemes. The Implicit
Eq. (122.11) has very different behavior for large time steps, because ifa physical
equilibrium or static selution with f{p) = 0 exists, then thiz selution will be found
even with one large time step.

123 Equilibria
12.3.1 Fixed poinis af the rate equations

When all the abundances are constant, 3%;/8¢ = 0, a kind of balance helds. How-
aver, this might net be a thermedynamic equilibrinm, i there iz a loop or cycle of
reactions with static abundances, but without individual reactions being balanced.
The CNO cycle of Fig. 1.11 iz like this: the reactions go only forwards, and rarely
backwards at each step. Thermodynamic equilibriuvm 1z defined to be rather the
case of detolled belance, the state of statistical equilibrinm when il reaction steps
in the network have forward and backward rates that are equal® Let us consider
the different kinds of equilibrinm conditions in stars.

Consider first a reaction of particles 1 and 2 that produce particles 3 and 4. The
met reaction wate is the difference betwean the forward and reverse reaction rates,

& Mote that thiz kind of detsiled balance i= & property of & ges or ple=ma, and iz diztinct from that prindple
deecribed in enbeecion 3.2.4, which was a property of & single machon step.
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so If for example rq; Is the ‘production’ rate and a4 Is the ‘decay’ rate,

TigTi4
- . 12.5.1
{ov)1z l_l_am':'ﬂ":'zd. i )

Ti172g
148797

T=Tiz =T =
By substitution of Bq. (12.1.37),

(o [ﬂm_ ngny (20 +1)(20;+1) (@)%m( Q ) |

"= 1481z (2F41)(2144+1) fren  kgT
(12.3.2)
In thermodynamic equilibrinm conditions, the rate of production equals the rate of
decay for each step Including this one, sor = 0, which implies

e (2LH)(25LH) (p g @
FlaTiq N I:gfz-l-ljjligfd,-l—ljj (Ju,34) EXp (_ -ECBT) ' (1233

This describes a statistical or thermodynamic equilibrium betweean two palrs of
nuclei in their ground states 1 4+ 2 = 3 + 4, the details of which are independent of
the actnal reaction rates {ov), and vary with temperature ¥ only according to the
g-value energy difference.

Secondly we may consider a reaction of two particles 1 and 2 to form a com-
pound system 12 as a resonance that lives for sorme period of time. Consider there-
fore a resonance at energy £ of total width I' = I'g 4+ I' composed of partial width
for the elastic channel of 'y and T’ for a reaction channel. Let us assume that the
Maxwwell-Boltzmmann distribution does not vary significantly across the width of the
resonance, so we may use the energy integral of BEq. (11.2.5),

o o Tl
£ A& o(&) = 3 STy 1T (12.3.4)

for the cross section for populating the resonance and decaving by the reaction
channel. IT°, 3 I'j then this non-elastic decay will happen almost every time the
resonance iz formed, whereas ¥ 'y < I'g then the reaction will be infrequent and
most often the resonance will decay back to the elastic channel

Substituting this in Bq. (12.1.17), with A*k? /31, = £, the energy of the reso-
nance, we obtain the reaction rate per particle pair of

B g r Tuls E
T = kT K2 P Ta+ Ta” °F ke

= am 2 PEIPD N
B (#nkﬂ”) HRES T (_ sch) (23

In terms of {ov) 1z, the volume production rate of the resonance Iz rip = mnz {ov) 2.
The resonance however decays to the reaction channel with decay constant A =

L]
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T, /A, and the volume decay rate is dwzg; /df = — Aszgp, where 7295 1s the number
density of nuclel pairs trapped in this resonance.
In a state of statistical equilibrinm, static abundance of the resonance requires

that r1z = —dseiz/dE, sothat Az = manz {ov)e, o
PD 2‘1'1— 2 o Pp_.'[PD EilknT
— e = FlqFle | —— A =T ° —Eika 12.3.9
PR 172z (#nﬂﬂﬁT) QJMPEI_I_PD { )
or
R Y 3 T
TE il el —EfkaT
= ¢ . 12.3.7
1217y (#12 FﬂBT) e TFa+T, ( )

12.3.2 The Saha equatian

The condition of static abundances iz not thermodynarmic unless the formation and
decay of the resonance by each step are equal. Thiz would require here that the
rate of population of the resonance from the elastic channel is equal to the rate of
decaying back to the elastic channel. This can only happen ¥ ' 3 T'o, in which
case

5
) orRd N 2
1z — ( T) G E—EI,I'II!GQTI (].2.3.8}
21723 Hizkg
We call the number
5
fazkpdh 2
o= | —— 12.3.9
Q ( -~ ) { )
the guantum concentration, In terms of which
1z —Ef kg T
= . 12.3.10
Tlﬂ‘lzﬂg Bl € I:. ;I

This condition on the mimber densities impeosed here by thermedynamic aquilib-
dum is a special case of the Saha equation obtalned for the simple case of re-
acting nuclel 1 and 2 with ne excited states separately. It can be derived more
directly from thermodynamic argnmments, but above we have presanted a micro-
scople derivation for a simple case of a reaction 1 + 2 = 12, where we know
formulae for both the forward and reverse reaction rates. The final formula, as
befits a thermeodynamic remult, makes no mention of the individual partial widths
Ta.

There are more genaral forms of the Saha reaction, both for nueclal with excited
states, and for reacting pairs that have bound states. We now derive the first of
these for the above 1 + 2 = 12 reactions.
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Lat the miclel species 1, 2 and 12 have energy levels Eia':', Egm and EE} re-
spectively, for level indices a,b,c = 1,5, .., and corresponding sping T iﬂ}, I 5&:'
and IE;:'_ Let @ = & = ¢ = 1 be the ground states. The statistical g fac-
tors are then ga..e = (QI':C:' + 1)/[(2r% 41327 1)), and the c.m. kinetic en-
argy that remains on constituting state ¢ out of ingredients in states ¢ and & is
PO Eg‘;:' — E%a':' — Egﬁ}. Lat 72,5, 72¢ and 72~ be the volume mimber densities
of the three kinds of species, and let ', be the reaction decay width of resonance ¢
which Is assumed again to be much less than the elastic width for both preducing
the resonance and reverting it back to its a and b parts.

With these conditions on the partial widths, If we equate the reaction decay rate
of the rezonance ¢, (A; = [';/R), with itz rate of production using Bq. (12.3.5), we
have, just as with Bg. (12.3.8),

e ﬂ@ = Gob E—Eﬂ:nb.-"l'!cﬂT
972 '
(c) .
_ 207+ o~ (Bl B Bk T (19511
(2P 412 +1)

H we sum the number density of the resonances ¢ over some range of states ¢ =
1,...,C, thetotal number density will banf, = Zf=1 7., Which gives

: © {e) g pla
%y = Mg+l el el ke
a2 gt (zr':"':'+1)(2r':{’3'+1)

B EE e pT )
= iogl@ & Z(QIEC}H -Ef/aT (12312
(2L 4+1)(2157 +1)

The sum of weighted miclear spins In this last equation occurs so often that it is
given a special name. We define the partition function G(T) of any micleus at

a given temperature T as the sum of 274+1 over its excited states p = 1,..., P
according to
il 1
Gr(T) = 3 (2Upt1) e~ (EW =B/ kaT, (12.3.13)
p=1

The partition funetion is thus proportional the thermal average of the number of
1i-substates available to the micleus.

The exponential on the right of Eq. (12.3.13) contains the excitation energles, so
at zero temperature Gp(0) = 25741, and depends only on the ground-state spin.
In terms of he partition function, the cummlative mimber density over the given
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range of excited states is

=]
-H_E, E{EF:I-I-EE :I:I."ll'!':HT

'TE.Q =
7 @ y1ycar v

Go(T)e Bl /s (12314

Then, by taking the reciprocals of boths sides of this equation, we can sum over the
encited states of both the constituent nuclel 1 and 2. Using thelr similar partition
functions & 4(¥) and Gg(T") we have

* *
natp _ g, GATGET) (sl sk, (12.3.15)
T2 Gel(T)

which is the more usual form of the Saha equation, with ng = (izkgT/ 2rh?)3/?
ag above. The exponential on the right contains the difference of the ground-state
enargies.

As stated above, the Saha equation 1z quite general, and applies also to the pop-
ulation of excited states of bound nuclel in a thermal plasma, as well as to bound
atoms in an electrical plasma, the context where Saha originally derived this equa-
tion [7]. We cannet give a simple derivation of thiz application of the Saha equa-
tion, since we have not yet derived formulae for the excitation and de-excitation
cross sections of a bound systemn on collislon with anether body. In fact, this is the
Saha equation’s mest useful application in nuclear astrophiysics, sinee the sums for
the number densities and the partition functions can be limited just to the bound
states. The equation can then be used at a given temperature to derive the number
of nuclel surnmed over all the states stable to particle decay, states which are ex-
cited in a thermal equilibrium, with relative probabilities (2J+1) exp{—¢e/kgT").
We give two applications of this result.

12.3.3 Reactions with excifed staes

Laboratory experiments can only measure cross sections dae, In which the targst
1z initially in its ground state, ; = 0. In a stellar plasroa at temperature T, however,
muclear excited states are populated with relative probabilities exp(—e;/kgT").
This means that the astrophysical cross sectlon &%, summed over all final states,
iz hence given by the thermal average

o _ o241 exp(—a/keT) 3, Tan,
- 22L+1) ep(—es/kmT)

(12.3.16)

where the I; are the spins of the excited states.
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12.3.4 Nuclear statistical equilibrinm

In certain advanced stages of stellar evolution, such as in the ‘silicon burning’
stages, the collection of miclear species 1s almost in thermodynamic equilibrinm.
Cn the short timescale of muclear reactions they are In equilibrinm, but there iz a
longer timescale of F-decay because of weak interactions, which slowly change
the isctopes, typically by changing neutrons into pretons. For practical analysis,
therefore, it iz very convenlent to first establish a muclanr statistical equilibrivm for
all the micleonic reactions, and regard the #-decays as a slow perturbation.
Consider therefore a chain of isotopes  Z of elemnent Z in thermodynarmic equi-
librinm at temperature ¥, In a plasmoa with a large number of neutrons. Define 2
ag the nummber density of the neutrons, 24 as the isotople mumber densities, rp as
the neutron mass, and 4 as the isotopic masses. The capture reaction n + 42
= A+1Z 4 7 releases an energy of @ = (Mg + Mg — Mayq — Ef'g.ﬂ-"l:'jr:z for
the ground state to ground state transition. If in thermedynamic equilibrium with a
high-density photon bath, the mumber densities follow the Saha equation

3
JGILC ( A )2 2GalT) B e':md+m':'—md+1:ﬂzf'!"BT, (12317

where 6, = (m kg /(2rk®))% 2. The partition functions here are surnmed over
the states of the isctopes bound to neutron emission, neglecting any resonances as
being too short-lived In this context. The neutron does not have any excited states,
so we have used Gy(1) = 2.

Ev mnltiplying equations like (12.3.17) along the isotopic chaln, we find that the
densities of isotopes 4 Z and 4+2 Z are related by

g a
'TEETZA _ ( A )2 PEa(T 6 E(md+smo—m‘4+,}c2ﬂcg'1"l (12.3.18)
2% 4 Ats Gatal(T

H the total number of bound and unbound neutrons iz fixed to say 72po, then the
absolute norrmalization of the izotopic densities iz determined by

> (Ads—Z)nlyy, + n0 = Rpa, (12.3.19)
a

and Bq. (12.3.18) therefore enables usto calculate all the w2, | in terms only of the
miclear binding ensrgies ithat is, masses). Filgure 12.3 shows how the equilibrinm
distributions near the 3*Fe peak are very sensitive to slight variations in the fraction

of excess neutrons.
These states of nuclear statistical equilibrinm will slowly change with §-decays,
which cannet be in equilibrium as the neutrinos escape irreversibly. The heavier
elements Z + 1 are therefore slowly produced by decays of the more neutron-rich
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Fig 12.3. Muclear statistical equilibrium at various neutron excesses, at a density of 107
gfem® and temperatore of 75 = 3.5, ¥, is the number fraction of clectrons and protons,

after Fig. 2 in [8].

members of the Isctopie chain, but, if this is sufficiently slow, the muclear statistical
equilibrinm s adiabatically pressrved.

12.3.5 Freeze-oui

When the neutrons begin to disappear, the (n,){v.n) equilibrinm becomes more
difficult to maintain and S-decays play a larger rele in determining the most abun-
dant isotopes of a given element. Bventually the neutron-capture and photodisin-
tegration reactions ‘freeze out’, and the nuclel sicply §-decay back to the stability
line. In these final stages, according to Surman et @l [9]. neotron capture and
photo-disintegration contimie to compete with #-decay, and their detalled rates
have an influence on the final isctopic distributions.

12.4 Sensitivities to nuclear data

An important question is to what extent the astrophysical phenomena are dependeant
on nuclear properties, and hence what sort of experimental and theoretical research
programmes should be carried cut. The principal kinds of miclear data that en-
ter into astrophysical calculations are the masses that set the G-values, the level
densities for compound-nucleus decays, F-decay lifetimes, and the cross sections
for the various caphire and disintegration reactions (averaging over resonances as

necessary).

In general, the reaction rates that are necessary to measure andfor calculate are
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SERsiivity analyses [ network caleulations

In order to see the effects of uncertainties of the cross sections, we need sersifivity
calculations. These typically uze Monte Carlo combinations of input data within their
ool bars, and analyze the fluctuations in the final rezults in order to determine their
overall accuracy. Altemnatively, a linearized analysiz of the network calculations may
be made, in order to conztruct a sensitivity matrix which shows how the results depend
on zpecific input nuclear propertics.

Senzitivity analyzes are outlined by Langankes and Wisscher [10], and recent wors
includes

¢ Fiorentini ef al [11], Nollett and Burles [12] and Serpico ef 2l [1] for primerdial
nucleozynthesis,

¢ Haxton of al [13] and Weizs ef al [14] for solar production,

¢ Hoffmman ef al [15] for nucleosynthesis in massive stars, and

o Iliadis ef al [18] and Hoffman ¢f 2l [17], for nova and supemova nucleozynthesis

Sensitivity i muclear statistical equilibrivm

In the nuclear statiztical equilibrivm discuzszed in subzection 12.3.4, the ruclear ratez
are in aquilibrivm, but not the J-decay procezzes. In thiz caze, the important ingre-
dients are the maszes which enter the exponents of Eq. (12.2.18), along with the 3-
decay lifetimes It iz not necessary to know the exact neutron capture and photo-
dizintegration cross sections, since these occur much faster than the overall change of
the number densities of the interacting and produced nuclei. Hanser-Fezshbach predic-
tions of decays, if uzed, always: assume some kind of statistical decay process in which
specific fluctuations (z.g. from individual rezonances) are not significarnt.

During nuclear statistical equilibrivm, the sensitivities of element production to
maszzes and level densities have been examined by Ravscher ef 2L [18], Demetriow ef
al [19], and Qian [20], for r-process sensitivities to nuclear maszes.

Box 12.2: Bensitivity Analyses

those that are wet in statistical equilibrinm. Such wex-equilibriym reactions are all
those where the reaction products are not sufficiently numercus that the reverse
reaction does not cccur in detailed balance, and therefore the precise forward re-
action rate iz a ‘bottlensck’ that does influence the number density of the reaction
products. Most reactions in voung stars are in this class, If only for the reason that
the reaction products have not yet accurmlated. As each new cyele (3o, CMNO, 5i-
burning) begins and later ends, thers are always certain non-equilibrinm reactions
that set the overall speed of the processes, and which therefore need to be known
with considerable accuracy.

In Box 122 we point to some of the sensitivity analyses that have been per-
formed, both in direct network calculations, and also concerning nuclear statistical
equilibrinm.

We should remember that most of the muclel used to construct the ‘average the-
ory’ of nuclear physics are those near the valley of stability, and we may well expect
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changes in these theorles to be necessary as we move towards the dripline, a move-
moent that will be required in order to understand the r-process. We do not know,
for exarnple, the variation in the optical peotentials needed for neutron-rich nucled,
and the imaginary part of thess potentials 1s exactly that which determines the
‘transmmission cosfficlents” 7, for the production and decay of compound-nucleus
states. This Imaginary part may well depend on the neutron excess (an isevector
porrt, we call it), and determnining this part will require a new range of experiments
and theoretical modeling. At the dripline, the level densities become rather smmall,
and it may not indesd be peossible to use the commoeon energy-averaging proce-
dures of Chapter 11. If, for example, the ground state iz near to thresheld, then
it will not be possible to find an averaging interval that Inclndes the many excited
state resonances, and in which there are simmltanecusly only small variations in
the Coulomb scattering functions and the penetrabilities that depend on these. The
theory of captire reactions on heavy nuclel near the dripline will again require
analysis of individual direct-capture mechanisms, as is already the case for light
miclei.

Need far indivect experiments

Direct measurements with exctic or dripline muclel are Impossible fthelr half lives
are too short for them to be produced and then used as targets In experiments with
light-ion beams. Reactions imvelving radicactive nuclel with half lives shorter than
aday or so will require experiments in which thess nuclel are the beam, rather than
the target. Bwven so, caphure reactions are too weak to be measured directly, and
thus must be inferred irdivectly from ather direct reactions that measure excitation
anergies, partial wave composition, spectroscopic factors, asymptetic normmaliza-
tion coefficients, level densities and cther properties of the relevant states. Transfer
reactions such as (d,p) will therefore continue to be an essential spectroscople tocl,
but now with a deuteron target so the reaction iz conducted in inverse kinematics.
The beams of radicactive miclel willhave to be produced by some means, focused,
and sometimes reaccelarated In order to make reaction with a denterated targat.
The aceelerators necessary to produce these radicactive beamms are cutlined in the
next chapter. In Chapter 14 we discuss using reactions at higher energies (above
the Coulomb barrier) to extract spectroscopic Information about the participating
miclel, and hence indirectly predict capture rates.

Exercises

12.1 Caleulate the reaction rates {orw ) for two proton and neutron reactions on  Li using
cross zections from [2], and compare with Fig. 12.2. There iz a resonance in p+ ' Li
zcathering at 440 eV Compare caleulations with and sithowt thiz rezonance to
find how it affects the reaction rates.
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12.3
12.4

12.5

(1]

[2]
(2]

[4]
(5]
[a]

(7]
[8]
(9]

[10]
[11]
[12]
[13]
[14]

[15]
[1a]
[17]
[18]
[19]
[20]
[21]

(23]
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Using the WKB approximation, derive the swcreening factor f = exp[Ua /T
presented in zubsection 12.1.77

Integrate numerically the CNO network equations of Box 12.1. Compare explicit
and implicit methods of zolution for long-time evolution.

Write out the reaction networs for the Big Bang reactions shown in Fig 1.6
Import reaction rates from the compilation of [21].

Uz nuclear =tatiztical egquilibrivm to find the most stable izotopes, when varying
the temperature, if there are equal proton and neutron numbers. At lower tem-
peratures, we should see (az in Chapter 1) that nuelel around 55 Fe are the most
stable, whereas at high temperatures they would be broken in faver of o particles,
and then into ssparate nucleons. What iz the effect of uzsing the partition functions
for non-zero temperatures? Compare with the results of [22].
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13

Connection to experiments

I your experiment neads statistics, you ought to have done a better experiment.
Ernert Rutherford

Making predictions for an experiment iz much better achieved I the person per-
forming the caleulation is aware of the experimental details. In this chapter we
therefore address some of the important issues to take into conslderation when
applying reaction theories. There iz a wide variety of experiments related to as-
trophiysics: the direct measurements (2g. (p.y), (n,7), (o 7)) performed at low
energy are obviously lmpertant, but there are also many indirect measurements
{e.g. Coulomb dissociation method), a large fraction of which make use of higher-
anergy accelerators. Many of the forefront research experiments involve radioac-
tive beams, while there are still important rates to determine using stable beams.

Since a large part of the research activity Is taking place in rare isctope facili-
ties, we will first focus (Section 13.1) on some specifics of these facilities, where
the exotic nuclel are produced, including beth low- and high-energy laborato-
ries. Mext, Section 13.2 focuses on different aspects of present-day detectors that
nead to be considerad when comparing caleulations with data. Finally, In Section
13.3, we briefly mention some of the direct measurements involving less-exotic
nuclel which are stable enough to be made into targets. Included are reactions with
light charged-particle beams (protens and alphas), neutron beams and photon
bearmns.

13.1 New accelerators and their methods

Many of the recent leading studies in nuclear physics inveolve unstable nuclel. The
first step in an experiment with radicactive beams Is the production of the ra-
dicisctope of interest. The standard setup for experiments with radioactive beams
thus containz an lon source from which stable ions are axtracted, the accelerator

355
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that gives ensrgy to the primary beam, and the production target where the exotic
species are produced and focnsed into a radicactive miclear beam (RNE). In some
cases, further manipulation of the RMB is required in order to obtain a beam with
the desired properties. It is with this secondary beam that experimental studies
are performed, requiring still a secondary target and finally the detectors. Beam
properties are to be kept in mind when performing reaction caleulations, and other
Important considerations are assoclated with the detection system.

13.1.1 Beam production

The first element in an accelerator facility is the lon source. Almost all lon sources
consist of a gas kept at high voltage in a plasma phase from which, In a mere or
less selective way, long are extracted. There are a large mimber of ways to confine
the plasma which give rize to a varlety of lon sources [1], but since these concern
only the primary bearn, their details are not so important for the reaction medeling.

Techniques to produce RMEs can be essentially divided inte two broad cate-
gories, called fiast fragmentation (FF) and (sotape sepanator on-line (IS0OL). In fast
fragmentation, the primary beam iz a heavy lon with high energy and the target
is relatively thin (m=100 mg/em?), so that after the collision the desired fragments
do net lose mnch energy (remaining at 250 MeV/u), and reacceleration Is not
needed. Cne of the first realizations of this technique was at Berkeley [2]. The
beamn produced Iz a cocktail beam (containing a mixture of izotopes with similar
charge over mass ratio) that needs to be purified and focused with electromagnetic
filters. Dlegraders can be used to reduce the energy of the beam if required for
specific experiments, but there iz a trade-off, as the use of degraders reduces the
quality of the beam: the beam spot size Increases as well as itz energy and angn-
lar spreads. Wedges are often intreduced in the beam line as a way to purify the
bearn, and in some cases they can reduce the energy spread. Examples of fast-
fragmentation facilities inclunde NSCL (USA), GSI (Germany), RIKEN (JTapan),
and GAMNTL. (France).

In the isetepe separator on-line (ISOL) technique, light particles (typically pro-
tons) are driven into a thick target, typically of a heavy element such as uraninm.
The thickness of the target and the beam energy are matched so that the beam is
stopped by central collisions producing a wide range of 1sctopic fragments. Thera-
dicactive species diffuse out of the target and then need tobe extracted and reaccel-
arated to energles up to =10 MaV/u [3]. In these facilities, the chemical reactions
betwaen the target and the radioactive atoms limit the rate of extraction, and thus
only a number of spacies can effectively be produced. Bxamples of ISOL facil-
ites include TRIUME (Canada), REX-ISOLDE (Switzarland), SPIRAT/GANIL
iFrance) and Cak Ridge (USA).
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Cther techniques exist. The Ion Guided Isctope Separation On-Line (IGISOL)
consists on a variation of the ISOL technique where the beam iz not completely
stopped [4]. There are so far only two Implementations of this technique: one at
Louvain-la-Meuve (Belgium) and the other at Tyvidsloyld (Finland). Also one can
entract radioisotopes from the core of a reactor as the planned Munich Accelerator
for Fizsion Fragments (MAFF) in Germany [5]. Finally a few radicactive beamns
can be produced using specific direct reactions, as is the case at ATLARS, Texas
ASM and MNotre-Dame, all in the TTEA.

More than the lon sources, the method of acceleration influences the quality
of the secondary beam, namely its energy spread, beam spot size, momentum
structure and of course Intensity. Cyelotrons are frequently used to accelerate the
primary bearn in fast-fragmentation faciliies, for exampler GSI (=200 MeViu),
RIKEN (=100 MeVi), NECL (=100 MeVi). These typically produce pulsed
secondary beams that have large energy spreads (up to 10%), beam spots of =2
morm? and distorted mormentum distributions, which make focusing harder. Also
the energy range is constrained by the primary beam, since reducing the secondary-
bearn energy degrades its properties. MNeveartheless, fast-fragmentation facilities can
produce a very large variety of exotic species and umally have the largest intensi-
ties

Tandemns and LINACS are linear accelerators often used In low-energy facilities,
such as those using the ISOL technique. They are characterized by a very good
energy rasolution, beam spot size less than | mm® as well a5 small angular spread.
There 1z also a chelce of energles for the ISOL beams, but they are typically of
lower energy, as otherwise these would become too costly (for a linear accelerator,
the higher the beam energy required, the larger the facility needs to be). Here,
though, there iz a limit to intensities due to space charge effects in the extraction

fon SoUrces
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Fig 131, Arcelerators at a fast-fragmentation facility: the National Superconducting Cy-
clotron Laboratory. Figure courtesy of Thomas Baumann.
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ISAC at TRIUMF

Fig 132 IUustration of an IZ0OL facility: ISAC at TRIUME Hgure courtesy of Barry
Davidz.

frommn the target area [6]. Note that eyclotrons and LIMAC: produce pulsed beamns
{from the RF sticture), whereas tanderns can produce contimious beams, but both
are equally suited for reaction studies. Beamns at Notre-Dame and Oak Ridge are
accalerated with tandems (among the older facilities), whereas LINAC s are usad
for reacceleration at ATLAS, ISOLDE, and TRIUME

An important advantage of fast-fragmentation faciliies iz that they can study
muclel with mmch shorter lifetimes than the ISOL facilities. Thiz is due to the fact
that diffusion cut of the production target takes time, and for nuclel with lifetimes
chorter than seconds, by the time it Is extracted and reaccelerated, the isotops has
dlready decayed. In fast-fragmentation facilities, secondary beams with lifetirnes
down to microseconds can be used.

Finally, there is a correlation between the beam energy of a facility and the
physics that can be done. Bxperimental programs at low-energy faciliies focus on
fusien (Chapter 7), transfer (Chapter 14) or breakup (Chapter 8) at the Coulomb
barrier, whereas fast-fragmentation facilitles measure Coulemb excitation, breakup
(Chapter 8), knockout and charge-exchange reactions (Chapter 14) well above the
barrier.
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13.1.2 An example of a fast-fragmentation facilty

The coupled-cyclotron facility at the National Superconducting Cyelotron Labora-
tory outlined in Fig. 13.1 1z an example where exotic species are produced through
fragmentation. A stable heavy isotope iz extracted from an electron cyclotron res-
onance (ECR) lon source. This primary beam is fed into the first superconducting
cyclotron (K500) and follows into the second one (K1200), resulting in a beam
of 80— 160 MeV/. Finally the primary beam collides with the production target,
generating a cocktail of nuclel, among which are the exotic nuclal of interest. The
subsequent sequence of electromagnetic devices consists of the fragment separator
AL900 [7], which provides the selectivity and focusing for the secondary beam to
be guidad to the final target.

13.1.3 An example of an ISOL facility

The ISAC facility at TRIUME, pictured in Fig. 132, Iz an example of an ISOL
mmachine. The primary beam consists of a very intenss beam of 500 MV protons
accelerated In the largest non-superconducting cyclotron in the world. These col-
lide with a thick uraninm target, which functions as an lon source for the secondary
beamn. The radicactive miclai are extracted and go first through a high-reselution
mmass separator. A beam of the nucleus of interest 1s then accelerated in a LINAC,
which in its first construction phase can attain a few MeVaL

132 Detection

A fast evolving area iz that of detector development. The materials used and the
electronics are both Important compeonents for the developer, but are not so relevant
for reaction modeling. However a few aspects need to be considered.? In reactions
with RME s one mavy be interested In measuring: (i) light or heavy charged particles,
over a large ensrgy range; (i) neutrons, specially in reactions with nuclel on the
neutron dripline; (i) garnma rays, for ldentification of final states.

RINE experiments often start with cocktail beams. A spectrograph for particle
1dentification which can also measire energies 1z an essential tocol in the analysis
of the fragments coming out from the reaction area. In Fig. 13.3 we show a ple-
ture of a high-resolution, large acceptance magnetic spectrograph in Michigan, the
5800, that iz able to separate the various reaction products and focus them into the
detector plate.

As the secondary beams are cocktails and the targets are typically a mixture,
there Iz usually a background from other radiomuclides that needs to be subtracted.

1 Mote that, even though here we focim on detectors uzed in RME experiments, many aspects are equally impor-
mot for stable beam experiments.
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Fig 13.3. The magnetic spectrograph at NECL: the 3800, Picture courtesy of Thomas
Baumann.

Acsimple example 1z the (d.p) reaction in inverse kinematics, where one has the car-
bon background from the hydrocarben used to make solid targets with deuterons.
The subtraction is umally possible when the contaminant has well-known prop-
arties, but it iz an additional complication. In the specHic meamiremnent [8] of
gl&(d,pjlnld, the carbon background iz large, and angnlar rangas were chosen to
clean the data. More elaborate methods, involving coincidence or tagging, are of-
ten cheosen because then the backgrounds can be reduced unambiguously.

In many cases, the secondary beam nucleus to be studied is heavier than the
target nucleus, and this imverse-kinematics arrangement Imposes specific technical
challenges. Imverse kinematics squeezes down the angular range for the reaction
products moving in the forward direction. Detectors need to be put at very forward
angles (where the elastic background may be large) and the angular resolution re-
quirements may need to be as fine as 107° degrees, =100 times better than in
nermmal kinematics. Light-particle detection s very dependent on the experimental
setup and properties of the target. For example, in (d,p) reactions In inverse kine-
mmatics, protons need to be detected at forward angles in the laboratory but also at
backward angles. In Fig. 13.4, an example of such a light charged-particle detector
iz shown (MUST). Bach detector is finely striped to obtain the angnlar precision
neadad.

Anocther aspect that is equally challenging is the energy of the charged particles
to be measured, as the energy of outgeing fragmments may vary widely with an-
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Fig 134 Picture of a segmented charged particle amray: BMUST.

gle (sometimes by orders of magnindes). Since there Iz no one detector that can
measure energies in such a large range, In some cases particular angnlar cuts are
mada.

H the target iz thick, there iz an additienal complication: one cannot determine
accurately the energy of the outgoing fragment at the time of the reaction. Using
again the (d,p) reactions as an example, whereas In the traditional normal kinermnat-
ics, measuring the proton would be sufficient for a meaningful analysis, in some
Iirverse kinematic experiments with thick targets, both outgeoing particles need to
be detected. An example Is the setup used to measure (d.p) reactions at Cak Ridge
sketched In Fig. 13.5.

H the RME intensity is low, as Iz typically the case for many of the leading
smidies, detector efficiency and acceptance become important issues. The offi-
clency of garnma array detection is far from ideal (varving from 1-30%) and is
normally traded for resolution. Gamma efficiency iz very energy dependent, and
the efficiency curve should be measured for every experiment and folded with the
theoretical prediction. A complication occurs when gamma rays are emitted in-
flight at very high velocities, because then they show large Doppler shifts when
detected. Gamma-ray spectra in the projactile reference frame should be Doppler
reconstructed event-by-event, and high gramularity of the gamma array is needed
to accurately determine the garoma emission angles that enter into this reconstrue-
tion. An example of a gamma array Iz the DATI2 detector from Tapan with 25%
efficiency and high granularity (see Fig. 13.4).

Meutron detectors are usually placed downstream, and need to be physically
entended to cover a significant angnlar range. Acceptance and efficlency require
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Fig 1353 IUustration of the usual zetup for (d,p) reaction in inverse kinematics at Oak
Ridge Mational Laborators.

special attention. In experiments invelving neutron charged-particle coincldencas,
theoretical predictions sometimes need to be processed through appropriate Monte
Carlo siomlations. An example is the large neutron array MolA at the NECL,
shown in Fig 137

Tue to limited production vield or detection efficiency, In many cases only in-
clusive measurements are performed. In such cases, reaction predictions become
generally less reliable, especially if it iz not possible to caleulate all the various
processes included in the data in the same theoretical framework. Bven when there
iz just one deminant reaction channel, it iz desirable that theorists make predic-
tions of appropriate integrated cbservables in the laboratory systern. If this is not
dene, experimentalists may try to reconstiict center-of-mmass observables based on
approximations which are net very accurate. For exarnple, consider the breakup of
A — B 4 = after collizion with a target, whara tha angla of F iz measurad and
x 1z not detected. Theorists normally produce cross sections as a function of the
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Fig 13.6. Ilustration of the DAT.I? gamma armay used at RIREN.
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Fig 137 Picture of the modular nevtron amray MOMA at NECL. Picture courtesy of
Thomaz B aumann.

c.m. angle of the group B + z, but this iz not the same as the B angle. A simple

telation like that of Eq. (2.3.14) might be tried to guess the fup(B) — fom(F)
transformation, but thiz is not correct within a three-body final state. Predicting the
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Fig 13.8. Typical setup for complete kinematic experiments with nentron rich nuclei at
GE1. Fgure courtesy of Thomas Aumann.

rmliple-differential cross section from the theory, and then Integrating over the un-
observable coordinates, is the best way to compare with the data, and is essential
for an accurate analysis.

The future peints toward complete kinematics, which Iz where all outgeing par-
ticles are detected, as well as an identification of possible excited states. Examples
of triple-coincidence meamiremnents are no longer rare. In Fig. 13.8 we show a
setup at &SI where neutrons, photons and charged particles are all measured in
coincidence. Such a setup allows, for instance, the measuremments of brealmp of
neutron-rich isotopes into speciic states of the core (2.g. [9]). The gamma detec-
tion array swrrounds the target, while the cutgeing particles go through a powerful
rmagnet that bends the charged particles into their detector to provide particles iden-
tification and mementum analysis. Meutrons are not bent and therefore go straight
inte the LAND datector. Througheout the baarn lines there are tracking devices to
anable energy determination using the time-of-flight technique. The drawback of
thiz type of experiment is the level of complexity of the devices. In marny cases, a
comparizon with the data will require folding the theoratical prediction with Monte
Carle simulations for the detectors. Again here it 1s necessary that the theory pro-
duces mmltiple-differantial cross sections in the appropriate laboratory frame.

13.3 Direct measnrements

There are several Impeortant programs that invelve direct measuremments for astro-
physics. For reaction rates Invelving charged particles such as (p,y) and (e, 7],
usually smoall accelerators are used. We also need many (n,y) rates and those re-
quire intense beams of neutrons for which there are dedicated faciliies. Finally,
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sometimes the photo-nuclear reaction rate is the preferred measurement, and tech-
niques to make photon beams are well developed. In this section we cover these
three cazes.

13.3.1 Charged particle beams

At ternperatures of stellar burning (see Section 1.3), the cross sections of charged-
particle induced reactions are extremely small because of the low tunneling prob-
ability through the Coulomb barrier. Instead, high-energy data are often extrap-
olated down to stellar ensrgies, but this extrapelation procedure Introduces other
uncertainties Into the reaction rates. For example, resonances in the continunm
can make these extrapelations unreliable, as would sub-thresheld states (see, for
example, Fig. 1.9).

At the astrophysical prohibitively low energies, It Iz crucial to eliminate any
source of background. To eliminate cosmic ray and cther background particnlar
to the experimental setting, experiments are performed with complex coincldence
schemes. Such is the option followed at the Laberatory for Experimental Nuclear
Astrophysics (LEMA) located at the Triangle Universities Muclear Laboratory. A
Wan de Graaf accelerator supplies proton beams of several hundred keV. Targets
are produced with techniques that allow removal of surface Impurity (reducing
beamn-induced background) and are monitored during the experiment. Prompt
gamma rays are detected and analyzed. Bxamples are the MN(py)1%0 [10] and
¥ o(p,y)¥F [11]. Slightly different are reactions such as (p,e), often appearing in
novae scenarios (subsection 1.5.2). These have challenges of their own which will
not be addreszed here (gee, for example, [12] or [13] for details).

Crne effective solution to the cosmic ray background is to go underground. In
Fig. 13.9 we show the Interior of the Laberatory for Underground Nuclear As-
trophiysics (LUMNA), located in the Gran Sasso mountain, as an example of sich a
facility. The accelerator produces o particles of severalkeV and, due to its location,
the experimental hall 1z well shielded against cosmic rays. The *Ha{ e, ) "Be was
previously the most uncertain rate in the pp-cycle (7>10%). With the new LUNA
measurement [14] the uncartainty was reduced to 4%. This reaction was discussed
in Chapter 1 (zee Fig. 1.4).

In explosive scenarios one typically needs to know capture rates on radicactive
muiclel. Focused experimental programs, coupled to radicactive beam facilities,
have been developed to address these Issues.

Radicactive beam facilities such as Louvain-la-Meuve are often used for direct
measurements in inverse kinematics. An example is ¥Ne{e p)21Na [13]. For this
experiment, an ISOL bearn (see Section 13.1) of several tens of MeV of ®Ne
i1z produced, and then slowed by degraders, to interact with a helium gas target.
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Fig 13.9. Ficture of the TUNA lahoratory for underground nuclear aztrophysics.

For long-lived isotopes, radicactive targets are an option, but the production and
handling of a radicactive target is diffieult and neot many facilities are willing to use
thern, to aveld contamination (in many countriss regulations prevent this).

Coupled to the ISAC-TRIUME facility (see Section 13.1), the DRAGON mass
spectrometer (see Fig. 13.10) was bulilt to measure the rates of some particular cap-
ture reactions. A radicactive nuclear beam from IS AT goes through a gas target
with either hydrogen or helinm In order that the beam may pass unobstructed, an
opening is located on either side of the target, which poses sometechnical problems
because the beam-line should be kept close to vacuum. Gas Is pumped away from
the bearn-line but target thickness needs to be carefully controlled so that accuracy
iz net lost. The products of the caphire reaction go through the mass spectrometer,
which separates the products from the original beam, and are gnided into the de-
tector. An example of an experiment using this setup is the 2* Al{p,¥)27S1[16], an
important reaction to understand the cbserved galactic abundancies of 28A1

Last but not the least, fusion reactions involving heavier nucleican have a critical
role in sevaral stellar burning scenarios. Stable-beam accelerators can be usad, and
an experiment using this type of facility measured the **C4+C fusion by y-rays
originating from the o, p and n evaperation [17].



13.3 Direct measurermenis 267

=0z largen BRI R

R [ () [

=1 \<'>
AN
G
'E'.dv__/\_,\’ ayn
T \%y
DRAGON s Y
e ED
B,
W = qunpnin el
1

K = moanechc dpoik
ol ook
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13.3.2 Neutron beams

For the s-process and the r-process, It Is important to know (n,y) reaction rates, as
discussed In Chapter 1. These have traditfionally been measured at small van der
Graaf accelerators which, through a charge-exchange reaction such as "Li{p,n)"Be,
produce a small flux of neutrons with well-defined energy. An example of this ap-
plication can be found at Karlsmihe [18]. By contrast, a large astrophysics program
at CERM, called n_TOF (neutron time-of-flight), iz devoted to a systematic study
of (n,y) reactions. There a high-intensity pulsed proton beam of 20 GV 1s used to
produce neutrons through spallation on a lead target. This produces a very Intense
white neutron spectrumm, which is menitored by measuring time of flight relative
to the production pulse. As sketched in Fig. 13.11, the first expedmental vaunlt is
nearly 200m downstream from the production target, which enables a very good
anergy resolution for the neutrons. Beam energles ranging from extremely low
(1 e¥) to very high (250MeV) are all possible, and prompt «y-ray decay cascades
are usad to register the (n,y) neutron capture events. Systematic stidies are being
performed on a variety of targets. The recent neutron capture on “™Pb [19] is a
good example, where data was collacted from 1 &V to 440 ke'V.
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Fig 13.11. Neutron time-of-flight facility at CERN, n TOF.

13.3.3 Photon beams

Sometimes, accurate measiremnents of the capture rate iz more difficult than mea-
suring the pheote-nuclear cross section. Facilities couplad to electron beams have
been developing photon beam capabilities to face this challenge. Cne possibility is
to use an alnminurm radiater to comvert the elactron beam into bremsstrahlung ra-
diation. This iz the method used at MAX-1ab, in Sweden, a tagged-photon facility.
The recoll electrons are detected and used totag the energy of individual photons,
which are collimated before hitting the target. An application of thiz method was
the measurement of *Ha(«y,n) [20], which usad a liquid target. The outgoing neu-
trons were detected In liquid-scintillator arrays.

Polarized photons have the added value of providing information on the ana-
Iyzing power and conssquently more details about the reaction mechanisms. The
High Intensity Gamma-ray Sowce (HIGS) at the Duke Free-Electron Laser (FEL)
laboratory produces pulses of pelarized photons. Electrons from a linear acceler-
ator are injected inte a storage ring. Thess go through an undulater, which causes
the bunch to produce a pulse of linearly polarized photons. These photons inter-
act with a second electron bunch and undergo Cempton scattering, which allowes
a clear separation of photon energy by scattering angle. The resulting Cormpton-
scattered photon beam has a very small energy spread at a given angle [21]. The
first measuremnent of the di~y,n)p analyzing power was performed using this methed

[22].
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Exercires 369

Exercises

Consider the elastic scattering of 50 M<V protons on a " Be radioactive target. If
the charged-particle detection armay covers from 10%—607 in the laboratory, what
iz the angular coverage in the center-of-mass frame?

Conszider "Be az now the beam with the detection setup the same as before. What
would be the angular coverage in the center-of-mass frame?
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14
Spectroscopy

There are two possible outcomes: if the result ¢ onfirms the hypothesiz, then you™ve made
a measurament. If the result is contrary to the hypothesis, then you'we made a discovery.

Enrice Fermi

In order to learn about the internal properties of miclel, some kind of reaction is
necessary. The most interesting questions concern the arrangements of nucleons
inside the miclens, and, for this purpose, transfer reactions have been the stan-
dard procedure for examining the single-particle structure of nuclel and extract-
ing spectroscopic factors. Transfer experiments in the sidies and seventies were
abundant, but they suffered a decrease of popularity following the shutdewn of
some low-energy laboratories. They are now becoming popular again to study ex-
otic nuclel, as more intense beams are produced in ISOL facilities. In this chapter
we primarily discuss the various features of transfer reactions. We present the stan-
dard theory used to analyze these reactions, namely the DWEBA, look at its advan-
tages and limitations, and then consider other approaches that handle higher-order
affects. We compare transfer probes with electron knockout and nuclear knock-
out reactions. At the end of the chapter we briefly discuss charge-exchange
reactions, which are used to extract Fermi or Gamow-Taller transition strengths.

14.1 Transfer spectroscopy

We begin by discussing standand DWEBA theory for describing transfer reactions.
This theory is most ussful for reactions that probe the surface regions of the nu-
clel, and try to measure the spectroscopic factors of the single-particle states. We
latar considar move peripheral veactions, and also more central reactions. More
peripheral reactions (at low energies or at forward angles) tend to probe just the
agymptotic tail of the transfer wave functions, whereas the more central reactions

370
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antrance exit

Fig 14.1. Coordinatesin the entrance and exit partitions for the transter Al 2, 5] 8 where
e=btvand BE= A+

typically imvelve more than one transfer or inelastic step, and require theory beyond
the DWEA.

14.1.1 DWBA transfer theary

Transfer reactions have been used as a standard means to extract Information on the
valence orbitals of a miclens, at least for the swface-dominated reactions. We first
discugs the traditional methed to analyze transfer experiments which makes use of
IWEA theory. Suppesing the angular distributions are similar, the spectroscoplic
factors are extracted from the data by a ratio of cross sections:

A =F dG_DWB\A

=g=e (14.1.1)
e an

Whereas the normalization of the cross section determines the spectroscopic factor,
the shape of the angular distribution can often be used to determine the orbital
angular momentumn of the single-particle state. Spectroscopic factors can then be
compared with stucture caleulations, such as ab-fitie calculations or the standard
shell model (whera an internal closad shell is assumed).

Mext, we present the details of a DWBA caleulation, collecting elements intro-
duced in earlier chapters. Of relevance are the concepts of a vector-form T matrix
Introduced in subsection 3.32, transfer couplings covered in subsection 4.5.1 and
overlap functions in Section 5.3.

Leat us consider the transfer process Alq, b) B, where ¢ = b+ transfers a cluster
« onto the targat A, forming a bound state B = 4 4 @, Tha ralavant coordinates
are shown in Fig 14.1. W first consider the exact transfer matrix alement, which
can be equally written in the prier form

T2eet = (=R 4 Vi — D3| (et ) i ()Y, (141.2)
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Fig 14.2. Tranzfer cross sections for different ¢ -values for 22(d,pit*C at 20 MV, The
C-value iz varied arbitranly.

or the post form

T = {‘I’IA;rg(rﬂA)XE;:'(Rfjlm + Vg — U402 (141.3)

The DWBA theory consists in replacing one of the exact solutions ©F=et of 5
three-body problem by a distorted wave multiplying a corresponding bound state:
T(r) % (R). The T matrix for the transfer process iz thus

TEEE = 0RO or (/) VIO (B (Re)), (14.14)

where V =1V, 4 + Vpq — U In the prior form, or V = V5 4+ V54 — Ty in the post
form. The interaction ¥4 Is the core-core interaction betwean b and A, and 15
and Va4 are the binding potentials in the entrance and exit channels, respactively.
The T and Uy are the entrance and exit optical potentials that are used to generate
the corresponding distorted waves 3; and xp. Within the transfer operator V, the
differences Vi 4 — U; and Vi 4 — U¢ are called the rempant terms In prior and post
couplings, raspectively.

The physical inputs are thus: (i) the optical potentials for the incoming and
cutgoing distorted waves, U and U (ii) a specification of the overlap func-
tions Tr,.75(F40) and Pz, (Cew ), which typically are described by single-particle
states in a Woods-Saxon potential with the depth fitted to reproduce a state with the
correct binding energy and the appropriate s2iy quantum numbers; (i) the transfer
operator, which, If using the same binding potentials and optical potentials, will
raquire as an additienal ingredisnt only the core-core interaction.

The standard procedure for surface-dominated reactions thus contains three steps:

(1) Bxtract the optical potentials from elastic scattering data, for the correct nucleus
and at the right energy (or for a nearby nuclens and the closest energy available).

Alternatively, sometimes it is preferable to uze potentials fitted to several data zets
of elastic scattering on the relevant nuclens but c overing a range of energies. This
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approach improves the ¢ onfidence lewel as it avoids rezonances or other anomalous
effects at izolated energies.

(i) Calculate the zingle-particle orbitals uzing the standard walues for the radius and
diffusenesz (r 73 1.2 fm and @ 75 0.65) and normally adding a spin-orbit force,
az we did in Section 4.2, Adjust the Woodz-Saxon parameters to reproduce the
empincal binding energies.

(iii) Compute the differential croszs section within the DWBA. If done cormrectly, post
and prier couplings zhould give the zame rezult (zes page 101). Compars with
experimental data, and, all going well, extract S5F by Eg. (14.1.10.

The most commenly used transfer reactions iz (d.p). A useful compilation of
{d.p) reactions, accompanied by a systermatic analysis, can be found in [1], who
dlso provide a web databasze containing a large rmumber of sets of transfer data
They show [1] that predictions of shell model are In good agreement with the spec-
troscopic factors extracted by this standard transfer-reaction analysis method.

In the following subsection we present particular features of transfer reactions,
and discuss how this analysiz changes for the more peripheral and the more central
collisions. In each case, we discuss what sort of information can be extracted from
the analysis of such experiments.

14.1.2 Q-value sensiiivity

Although not explicitin Eq. (14.1.4), there Iz a strong dependence of the magnimde
of the transfer cross section on the €-value for the reaction. For the transfer of
a neutral particle, the cross section Iz largest when §) = 0, so §-value matching
enhances the population of particular excited states. For instance, (p,d) and (*He, o)
transfers populate very different states of the product nuclens because their -
values are 2.2 MeV and 19.8 MeV raspactively. The (*Ha, o) reaction will extract
mmch mere desply bound nentrons from the target micleus. The larger the energy
mismatch, the smaller the cross section, as s=en in Fig 14.2.

14.1.3 Angular momentum sensitivity

To see the angnlar momentumn selectivity in transfer reactions mest clearly, it is
useful to take a specific case and make several approximations. We consider the
Ald,p) B reaction In post form for transfers to a specific bound orbital angular
momentum {g. For this argument, we neglect the remonant term, so that the transfar
operator Vis simply V(7). the binding potential for the deuteron. This potential is
of short range, so we may often use the zero-range approximation for the deuteron:
Vapda(r:) = Do 6(Ry—R;), where Dy = —122 5 MaV fm¥ 2.

For a siople demmenstration, we now to use a plane-wave approximation for the
antrance and exit channels (T = &7y = 0), for In this casze the transfer T matrix
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reduces to simply

TEWBA = aneﬁq'ﬁ@fd:fg(ﬂjdﬂ

— ZéE(QH—l)fF;(Cl,quf(qR)P;(cosﬂj@;A;;H(Rde. (14.1.5)
I=0

whare | = g iz the angular momentum transferred. Here, q iz the momentum
transfer that increases with scattering angle according to ¢ = pf-l—pf:—?pipf cosd,
with p; and p ¢ the momenta of the incoming and eutgoing particles, and # the scat-
tering angle. The angular part of the second integral selects only those [ values
that appear in the T7,.;,(R) bound state: just one value for the simplest overlap
functions. As a function of mementum transfer ¢ (directly related to &), the cross
section is essentially proportional to |£3(0, ¢ &) |* for a single [ value. Bven when
distorting optical potentials are Included, thers will typically be dominant com-
ponents whose shapes allow one to determine the mmain angular morenta of the
overlap functions. In Fig. 14.3 we show the more realistic variation of the TWBA
angular distribution depending on the angular-meomentim transfer: the larger the
angular-oomenturn transfer, the stoaller the cross section, and the more its peak
shifts away to larger angles. For i = 0 (s-waves) there 1s a peak at ¢ = 0.
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14.1.4 Extraction af asympitatic normalizadion cocfficients

Consider again the transfer reaction Ala, §)5, where the nucleus of interest is
B = A+ v. From subsection 4.5.1, outside the nuclear potentials of radius R, the
agymptotic behavior of the overlap function Pr,.ro(r) iz proportional to a Whit-
takeer function as

Orata(0) "E0 CEEW_ sy y2(2007) /1, (14.1.6)
whare ky = /2 [ido £40 /A%, With €4, the binding energy for B — A + .
The constant C-‘Ej‘.:g iz the asymptotic normalization coefficient (ANC) defined in
Bq. 4.524).

Although the overlap function P7, .ro(r) Iz a many-body quantity, we generally
try to write it as proportional to some single-particle wave function, and introduce
mmany-body effects just through the constant of propertionality, which in thiz case
is the normalization of the state

1) = At (), (14.L.7)

where the single-particle wave function g, (r) is normalized to unity. The asymp-
totic form of () is 1dentical to Bq. (14.1.6) with an asymptotic normalization
by uch that CfF 5 = 414%™ by,

The main contribution to the norm of an overlap function comes from the nuclear
interior, whereas the ANC iz a peripheral quantity. If the reaction were completely

peripheral, the D'WEA transition matrix would be

THB = GF 5 (xS (R )Wop, 1412(2807) /7 [V 5, (B ) X (L))
(14.1.8)

Peripheral reactions are therefore 1deal for extracting ANC values [4], as the
differential cross section becomes proportional to (C"ﬁ:gjz = .5'5;1:5 bfj and net to
the spectroscopic factor .5'5;1.:5 = (Af:;t“rﬂ 1% alone. I spectroscopic factors are ex-
tracted from peripheral reactions, the uncertainty from the single-particle potential
parameters (which determine ;) will be extremely large. Thiz phenomeneon is il-
lustrated In Fig. 14.4: while the fitted spectroscopic factor (trlangles) varies with
by, the ANC (black circles) remmaing constant. This iz a good example of an indi-
rect method for measuring nentron capture rates. The 4% Ca(d,p)** Ca can be used to
deterrnine *¥ Ca(n,y)**Ca as mentioned in the context of the s-process In Chapter
L.

ANCshave a unique astrophysical Interest: they determine the direct capture rate
Alw,y) B at the limit of zero relative energy. Bxperimental programs for extract-
Ing ANCs from peripheral transfer reactions have been implemented (for example,
at Texas A&M, Oak Ridge and Pragus). To ensure peripherality, targets heav-
fer than deuterons are typically used, such as *N. Another method proposed for
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extracting ANCs consists of measuring the transfer in heavy-lon cellisions at sub-
Coulomb energias, with the advantage that the kinematics would be direct [5, 3].
This method has neot yet been explored experimentally using radicactive beams.

14.1.5 Extraction af specirascopic factors

The ability to extract spectroscopie factors in transfer reactions depends on whether
the reaction moostly takes place In the surface, in the periphery, or more in the in-
terior of the miclens. Figure 14.5 sketches the sensitivity to the different radial
ragions of the overlap function of 1*C for the reaction ¥ C(d,p)1*C at beam enet-
gles of 5, 15 and 30 MeV. The sensitivity also depends on the mapping betweean
scattering angles and Impact parametars.

For surface-dominated reactions, If the optical potentials have been determined
through elastic scattering, the ¢-value iz extracted from the energy spectrum, the
[-values are known by shape matching, and there iz a good guess as to the structure
of the overlap function, then it iz possible to caleulate the transition amplinde in
DWEA It 1s commeoen to extract 5% by direct comparizon with the data, fitting up
to the first minirmum (corresponding to an impact parameter grazing the surface).

As one moves to larger angles (scattering from impact parameters smaller than
the nuclear radius, so more interior), the I'WEA Iz ne longer expected to provide
reasonable results, even for the angular shape of the cross section (this is tue for
transfer but also inelastic studies, charge exchange, etc).
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Fig 14.5. Radial sensitivity of the reaction Y2(d,p)®C to different parts of the overlap
function ' C relative to the core ¥ at 5 MeViu only ¥ C-n distances up & fm are probed
icompletely perpheral); at 15 BeWVii the reaction becomes sensitive to the overlap fune-
tion down to 5 fm; at 30 WeV the reaction iz sensitive to the overlap function in the desp
interior. Reprinted from [3], with permizsion.

H only the very forward angles are used, by contrast, it may be that the transfer
iz completely peripheral and thus ne lengsr sensitive to the interior. Under these
clreumnstances, one should rather extract the asymptotic normalization ceefficient.

Whatever the impact parameter, if the state being investigated is a pure single-
particle state, one configuration should suffice to describe the data. In many cases,
however, the state being Investigated will not be a single-particle state, and then
all contributing orbitals need to be taken into account. Thesa contributions sheould
be added coherently, as interference may affect the results, and so for a oult-
configuration state the extraction of the spectroscopic factor is not so clear. A pos-
sible procedure iz thus to take predictions for the spectroscoplc amplitndes from
the shell model (or some other microscopic model) and form the transition ampli-
tude by the coherent sum of the components using those model amplitndes. If the
various compeonents have different shapes, the experimental angular distribution
mmay help to impose limits on the relative strangths of thelr specific contributions.

14.1.6 Dependence on optical potentials

DWEBA transfer cross sections are typlcally very sensitive to the optical potential
parameters. The angular distributions from different optical potentials can vary slg-
nificantly, as shown in Fig. 14.6. Moreover, different optical potential pararnetriza-
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tions can provide spectroscopic factors differing by factors of 2 or 3. Consequently,
1t iz very Important to pin these down as much as possible. When studying stable
muclel, transfer experiments weare often accompanied by elastic scattering measure-
ments for the required channels at the relevant energies. It has been argued [7] that
the use of elastic data for a single nucleus and at a single energy may produce an
unreasonable optical pararneter set, and that a preferable appreach Is to fit siomlta-
neously a set of elastic data for a range of energles. There Iz often more than one
rminirna in the x® function, and a multiple-data fit reduces the chances of spurious
variations of the potential parameters with energy.

To better lllustrate the situation we consider a systematic compilation and re-
analysis of the 12C(d,p)1*C data [8], for beam energies ranging from 2MeV to
T0MeV. The published spectroscopic factors differed by up to a factor of three
The analysis of [8] was perforrmed within zero-rangs DWBA, using glebal optical
potentials such as CHB89 [9]. Global potentials reduce significantly the flucthations
in the results, although individual fits may not be so closs. When general trends
are intended rather than an accurate cross section for a given energy, it Iz best to
use consistently a global parametrization. A further improvement can be obtained
using a Jeukenne-Lejeuns-bahawx (JTLM) folding procedure for calenlating the
micleonic optical potentials ([10], see subsection 5.2.3) which reduces the number
of paramneters, although some fine tuning of the imaginary part iz still necessary.
In [8], the deuteron potentials were calculated from the nucleon-target potentials
following the Johnson and Soper adlabatic prescription ([11], see subsection 7.1.2)
to take deuteron breakup into account. Deuteron breakup effects are expected to
Increase with beam energy, so the adiabatic approgimation (subsection 7.1.5) is
very useful to obtain a simple description of the transfer reaction that goes well
bevond DWEBA.

Whether there Is the adequate elastic data to determine the optical parameters or
not, it iz Impertant to evaluate the uncertainty in the extracted spectroscopic factor
caused by T7; and ¢, This dependence tends to increase i the remnant contribu-
tion iz large. If the potential depths are approximmately proportional to the number
of nucleons in the projectile (=50 MeV for micleons, =100 MeV for deuterons,
atc.) then there will typically be some cancellations in the remnant terms. If some
shallew potentials are used, by contrast the effects of including the remnant will be
large, even I they reproduce elastic scattering.

14.1.7 Dependence on single-particle parameters

The uncertainties of the transfer cross saction from thelr dependence on the detalls
of the radial behavior of the overlap function are usually neglected. This may be
appropriate for bound states in stable nuclel, where electron scattering provides de-
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Fig 14.6. Dependence of the spectrozcopic factor on optical pammeters for
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are renormalized to emphasize the different angular dependence.

tailed density distributions from which the radii and surface thickness can be fairly
well determined, but uncertainties in the single-particle parameters are expected to
Increase nearer the neutron and proton driplines. Ab-initio caleulations of overlap
functions of light loosely bound muclel are consistent with a Woods-Saxon-shape
affective interaction, but often the standard geometrical parameters v = 1.2 fm
and ¢ = 0.65 fm need large adjustments. Cne problem of using many-body cal-
culations for the overlap functions is connected to precision: ab-fnitie caleulations
so far are only just beginning [13] to provide accurate results for radii cutside the
miclear size, and in addition they are restricted to light miclel.

The uncertainties Induced by ignorance of the geometrical parameters (7, a) are
correlated, and are therefore partly described in terms of the single-particle ANC
b;;. Generally in transfers, more than 50% of the transfer cross section comes from
the tail of the overlap function, and this translates Into the cross sections depending
more on bf_?-_ In the past, no attempt to constrain the asymptetic part was made:
single-particle parameters where tuned to produce unit spectroscopic factors for
closed-shell nucled, at the cost of arbitrary ANCs of the overlap functions. Simoul-
taneous analysis athigh and low ensrgies canhelpte pin down by and consequently
reduce the uncertainty in the single-particle parameters [14, 15].

In the limit of a very peripheral reaction, the dependence of the DWBA cross
section on by, s quadratic, since the relevant part of the square of the wave func-
tion, contributing to the cross section, is proportional to (Gﬁiﬁ 1E = .5'5;1:5 bf_?._ As
the spectroscopic factor Is extracted as a ratio of the data to the DWBA prediction,
the extracted spectroscoplc factor will depend on bﬂ.z, as llnstrated by the line In
Fig. 14.4. By varying the potential geometry, a range of &, can be generated, and
i we use these to predict the DWBA cross ssction, we obtain a spectroscople fac-
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tor which depends strongly on b;. Also plotted in Fig. 14.4 iz the corresponding
ANC (divided by 100) which iz constant, regardless of the potential geometry cho-
sen. From Fig. 14.4 we would predict that spectroscople factors extracted from
B Ca(dp)*Calgs.) at 13 MeV will be very dependent on the single particle pa-
rarnetars.

14.1.8 Higher-order corrections

There are several possible types of excitations that give rise to higher-order correc-
tions. On one hand there are distortions and/or breakup of bound states, and on the
othar the excitations of collective states (vibrational or rotational).

When channel couplings are strong, we need to go beyond one-step approxi-
mations and allow for projectile and/or target excitations. It may be necessary to
describe the entrance or exit channels of the transfer process in a coupled-channals
forrnalism If the strongly coupled states are excited bound states of a collective
mucleus, a suitable framework s that of the coupled-channel Born approximation
(CCBA, see subsection 6.2.2). If, on the other hand, the projectile system Is loosely
bound, it may have an (even more) loosaly-bound excited state, and it will suraly
couple strongly to the continunm. The bound-state excitations can be treated as
excitations within the standard CCPBA formalistn. Methods for including single-
particle excitations inte the continuum (breaknp) need additional attention in de-
termining the excitation couplings and were discussed in Chapter 8. A particular
methed for including breakup is the adiabatic method presented in subsection 7.1.2,
which Includes deuteron breakup while kesping the caleulations simpla.

In single-particle excitations, we must know the spectroscopic amplitudes within
the overlap functions (rather than spectroscopie factors) because the contributions
from various compenents of the overlap function of 4 = F 4+ v need to be added
coherantly as

oF(2a,) =3 AL wy(r) 2f(ca). (14.1.9)
Iir

This mixes different states I of the core A. In Fig. 147, we lllustrate possible
couplings contributing to the HCILd,ijC reaction [13]. Including the first excited
state of 12C produces a three-component 1/2~ ground state for 1*C. If many such
compeonsnts were Important, it would be impossible to extract all amplitndes Af;;‘r
from the transfer angular distribution. Flux may also feed through the different
states of the compesite system B, for example through the excited states of 1*C
shown in Fig. 14.7. The simation becomes then even more intricate, and itis rather

difficult to disentangle reaction from structure. Good practice iz thus to take shell
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Fig 147 Bxample of couplings included in the caleulation of the tranzfer reaction
odpit?Cin [16].

model predictions for all the spectroscopic ammplides, with the appropriate phases,
and compare the overall predictions with the data.

Added complexity arizes when the transfer coupling iz so strong that coupled re-
action channels (CRT) methods are required. Then, because there are contributions
from transfer l-step, 2-step, etc., the dependence of the differential cross section
on the spectroscopic factor 1s ne longer linear.

The best prescription is again to take the most reliable structure prediction (um-
ally shell model for single-micleon transfer and a microscople cluster model for
mmlfi-nucleon transfer) and use it with the best reaction model, compute the dif-
ferential cross section and commpare cross ssctions directly to the data. One should
then vary some of the less-certain parameters in the sticture model to reproduce
the experimental results, and thereby infer on the accuracy of the stmcture Ingredi-
ants.

14.2 Knockont spectroscopy

In the study of stable nuclel, electrons were used to study the configuration of the
ground state, as an enargatic electron can probe deep Inside the miclens without be-
ing mmch absorbed. Nuclear transfer reactions were also used for the same purposs,
but typically the reactions are then more surface peaked. In Fig. 14.8, the probabil-
ity for (e,2'p) knockout on **Ca in the sscond row is compared to the probability
for (d,*He) transfer in the last row, as functions of the ¥¥Ca-n distance. Results for
the extracted spectroscopic factors from {e,2'p) and transfer do not alwavys agree,
but afforts [17] have been made to understand the source of disagreement.

More recently, miclear knockout with y-coineidences (A(a, by)X) has bacome
an alternative method [18]. One-particle miclear knockeout reactions are those
where a projectile A iz Incident on a light target, and the state of the A—1 system
and its mementum distribution are measured by the detection system. In Fig. 14.9
we show a diagram of a nuclear knockeut reaction, and many examples for both
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these bound-state wave functions, from [17]. Reprinted from G J. Kramer, ef al, Wuck
Phys, AGT9 (2001) 267, Copyright (2001), with permizzion from Elsevier

neutron and proton kneckeout can be found inthe survey [18]. Spectroscopic factors
entracted from miclear knockout experiments with stable beams are in agreement
with the (2,&'p) values.

A detailed comparizon of spectroscopic factors extracted from transfer, electron
knockeut and nuclear knockeout Iz shown in Figo 14.10. Direct comparisons are
lirnited bacause elactrons cannet be used to probe nuclel far from stability in fixed
targets; bacause those exotic nuclel have short lifetimes, they can only be used In
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colliding-bearmn experiments. Such experiments may become feaszible in the next
generation of machines (for example, GSI has plans for an electron-scattering fa-
cility with rare-Izotope beams).

It iz simpler to compare the two standard miclear methods for extracting the
specttoscopie factors, transfer reactions versus knockeout measurements at higher
anergy. Whilst kneckout iz limited to ground-state spectroscopy, with transfer
one can sudy both ground and excited states. Also, transfer experiments probe
both particle and hele states (through picknp and stripping), while knockout can
only study hole states. The agreement between the spectroscople factors extracted
through thesa two methods 1s shown In Fig. 14.10.

While transfer data iz traditionally analyzed within TWBA, the analysis of knock-
out is usually performed with the elkonal approximation (zee Section 7.2). In nu-
clear knockout reactions, a muclens A iz Incident on a target T and loses one or
more micleons, and the mementm distribution of the A—1 system Is measired
(see subsection 8.3.1), with an accompanying gamma ray whensver the knockout
leads to an excited state of the core. In this way the residual population of each
individual core state I can be determined. The measured mementum distdbutions
are Inclusive, however, as they include stripping (transfer) as well as diffraction
{elastic breakup), but both components of the single-particle cross sections can be
calculated within the aikonal meodel (see subsaction T.2.44f). The essential ingre-
dients in the caleulations are the S-matrices asz a function of impact parameter &,
which are often built by folding methods, or from empirical potentials that should
reproduce the corresponding elastic scattering [19]. The shape of the momentum
distributions relates to the angular momentum transfer. As in transfer, the normal-
Ization iz connected to the spectroscopic factor.

In order to obtain the angle-Integrated theoretical cross section to be comparad
with experiment from an initial state ¢ of nucleus A to a final state f of the A1
gystem, each single-particle cross section o®(#45) iz multiplied [19] by the corre-

Knockout
residue

Projectile

Gamma ray

Fig 14.9. Schematic of a nuclear kmockout reaction. Reprinted from [3] t with permission.
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Fig 14.10. Eingle-particle spectroscopic strengths az a function of mazs number com-
parizon of electron kmockout, nuclear kmockout and (pd) transfers az a function of the
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12 < A < 49 AT is the difference in nevtron and proton separation energies, for neutron
spectroscopic factors and wvice wersa for proton spectrozcopic factors. Reprinted from [3],
with permizzion.

sponding spectroscoplc factor Sé * from shell medel:!
of = Z Ba(eq). (14.2.1)

Cre main drawback of the methed 1s that Coulomb contributions are estimated in-
dependently and added inccoherently. Also, it iz assumed that stripping and diffrac-
tion processes do not Interfere, which may not always be the case. Nevertheless,
the elkonal methed has provided a simple and consistent platform for analyzing the
gy stemnatic k_nockout smudies performed on dripline nueclei [18].

Evycomparing .:.rﬁ to experiment, a consistent reduction factor has been observed
iy = SEFPKSE? = 1 (see Fig. 14.11). This may be explained theoretically as the
affect of short-range correlations, or other types of correlations neot included in the
standard shell model, based on effective interactions. For stable miclei thiz redue-
tion facter is approximately 0.6, and it appreaches unity for very loossly bound
systems. Research on this tople contimies (e.g. [20]).

In summary, knockeout reactions, astransfer reactions, probe single-particle prop-
arties of the nucleus, and provide a good testing ground for shell medel predictions
1 Mote that shell-model gpectoscopic faciors 1ming hammonic-oscillator basis states should be muldplied by a

center-of-mass correction (A (A—10" where Y = 2n 4 [ iz the harmomic-cecillator quanhmm number, if
the extraction method of Bg. (3.1.14) iz oot used.
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{for example the occurrence of magle mimbers). Since the shell model provides
cch input to astrophysics, these reactions are a natural and impoertant component
of astrophysical research programs.

143 Inelastic spectroscopy

The cross saction for exciting a nucleus from its ground state into a bound excited
state relates to the intrinsic structure of the nucleus, usually expressed as a reduced
transition strength B¢ — f) (see Section 4.4). If the process of excitation 1s one
step and can be treated within DWEBA, then, as with the transfer case, the nor-
mmalization of the predicted DWBA cross section to the experimental cross section
provides a transition strength. Tust as in transfer reactions, the shape of the angular
distribution again provides information on the angnlar meomentum of the state.

Many cases exist, though, where strong couplings betwesn states are present.
Then a coupled-channel formulation of the problem iz necessary. In that case, the
extraction of the transition strangths betweean the various relevant states isno longer
straightforward, and relies on input from a stietire model, such as the shell model
or mean-field meodels.

H the probe uged to excite the mucleus is light, the reaction is miclear dominated,
and one can extract information of the nuclear transition strength. Proton inelastic
scattering is often smdied with this purpose In mind (zee, for exarople, the extrac-
tion of quadrupole strength of 1¥Ba [21]). Often one is interested in the eletromag-
netic strengths connecting states. One might assume that the nucleaar matter and the
charged matter are equally distributed, which means that the nuclear deformation
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iz the same as the Coulomb deformation, but this iz net a good approximation if the
mucleus is far from stability. Then it iz best to also use a heavy probe, because the
excitation then occurs through the Coulomb fizld, and the analysis should probe
the required electromagnetic properties.

Muclear collectivity is an intrigning phenomenon that continues to attract atten-
tion. Quantitative Indicators of collectivity are the elactromagnetic transition prob-
abilities. Collective couplings, introduced in subsection 4.4.1, can be determined
expearimentally by measuring either the decay lifetime, or the Coulomb excitation
cross section [22,23]. The Coulomb excltation ("Coulex’) technique was originally
devized to measure transition probabilities of the target at sub-Coulomb energies
chosen to ensire a miclear-free measurement. More recently, a growing interest In
understanding the development of collectivity on the miclear driplines has led to a
Coulomb excitation program at higher energies, where the beam particle, now the
cbject of study, is excited through the virtual photen field with a well-known heavy
target. The energles are high encugh to inhibit multi-step effects and data is taken
only at very forward angles, where one expects to be free from nuclear interfer-
ance. The analysis of such experiments iz often performed within the semiclassical
theory of Alder and Winther introduced In Section 7.3, although there are cases
where quantum effects and couplings need to be considered [24]. An application
of the method can be found in [25] where the excitation of the unstable miclens *°2
was studied to extract B(E2) strangth.

As opposed to collactive properties, one may alse be Interested in single-particle
excitations (see subsection 4.4.2). Those couplings connect single-particls states
rather than states which belong to a collective band. As before, heavy probes will
allow the excitation to happen mostly through the Coulomb fild, and hers provide
a direct measure of the single-particle electromagnetic properties of the nucleus.
Cre example of a very strong single-particle transition probability is the B(EL)
betwesn the ground state and the only bound excited state of 11Be. An early use of
Coulomb excitation to extract this strength can be found in [24].

14.4 Breakup spectroscopy

Many capture rates involving charged particles that are relevant for astrophysics are
needad at low ensrgies where the Coulomb repulsion makes the cross section for-
biddingly small It is therefore comvenient to deviss indirect methods from which to
entract the required information, so here we discuss two of thege Indirect methods.
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14.4.1 Counlamd dizrociation method
Through detailed balance, the photo-disintegration reaction p+ 7 — e 4+ v is
directly proportional to the capture reaction ¢ 4+ v — p 4+ 7y according to
doepr  202L41) Kl do,
dfy, (244124, +1) kT dE

(14.4.1)

where k derives from the relative energy € of v + ¢, and &, is the wave number of
the photon, defined by &y = £, /Rc = (£ + §)/fic. Generally, ky <& k so that
Tdiz & Ogap. Which makes it easier to measure photo-dissociation in comparison
with direct capture. The Coulomb disseciation methed [27] consists of inducing
the disseclation in the field of virual photons generated by a heavy target p +¢ —
¥+ ¢+ t. If the Coulomb breakup process is one-step, and dominated by a single
mmlfipele transition A, it iz possible to give separate factors for the kinematics of
the reaction and the photo-dissociation rates. Using, for example, the semiclassical
theory of Alder and Winther introduced in Chapter 7, we have

dzﬂ'cd _ 1 d‘TE,EA dG’diEI:E}n:J
ANdE, £, 40 a8

(14.4.2)

The quantity dwg, /dil is called the wirtual photon smember [28], and hag analytical
expressions in semi-classical perturbation theory (Section 7.3) either In relativistic
of neon-relativistic kinematics.

We can write the photo-dissociation cross section explicitly [30] in terms of the
reduced transition prebabllity (intreduced in Chapter 4) as

doas(F2) _ (2m)*(a+1) (5) “=1 apE)
dE A((2A+1)INE | Ae dE

These BEqs. (14.4.1, 14.4.2, 14.4.3) would suggest that a measurement of Coulomb
disseciation should directly determine the capture rate. An example of the appli-
cation of this methed 1s shown in Fig. 14.12 for determining the capture rate of
U Cin, )18 C. The capture cross section extracted indirectly through Coulomb dis-
sociation and the direct measurements are compared in Chapter 1 in the context of
the r-process. However, there are some complications that need to consldered.

In most cases, the direct-capture cross section is dominated by A1 transitions,
whareas the Coulomb dissociation contains non-negligible £2 contributions, and
different multipelarities of the strong Coulomb field interfere with each other
More Importantly, many capture reactions happen at very large Impact parameters
and are thus Coulomb dominated, whereas the Coulomb dissociation usnally con-
tainz nuclear contributions. Bxperimentalists restrict thelr Coulomb-dizsociation
measurements to forward-angle regions and small relative energles to try to min-
imize these problems. In some cases, the nuclear contributions are scaled from

(14.4.3)
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Fig 14.12. Relative energy diztributionfollewing the breakup of 1% C on *F Pb [29]. Com-
parizon of the data with the virtual photon methed. Reprinted from T MNakamura ef =i,
MNucl Phys A 722 (2003)301c. Copyright (2003), with permizzion from Elsevier

reactions on a light target and subtracted from the measured dissociation cross sec-
tions in order to extract a ‘pure Coulomb’ contribution. It has been shown [31],
however, that, In particular for loosely bound systems, scaling the miclear contri-
bution iz not reliable, and also that nuclear interference effects are large, even for
restricted angular cuts, because of nuclear diffraction from small impact parame-
ters to small scattering angles. The best way to cbtain reliable results, therefore,
consists of using the best reaction theory medel, including nuclear and Coulomb
consistently and mmltipole interference (such as CDCC introduced in Chapter 8),
and tuning the projectile structure potential such that the measured cross sections
are reproduced. The resulting structure model for the projectile will then determine
the mnltipole response dB({£1) /dE required to caleulate the capture rates at the
necessary astrophysical energles, as for example In [32].

4.4.2 Extracting an asymptotic normalization coefficient

As mentioned above, charged-particle capture rates for astrophysics are very strongly
hindered by Coulomb repulsion, so astrophysical capture rates must often be ex-
trapolated to the low thermal energies needed in stellar environments. Dus to the
uncertainties In the extrapolation to low energles, a metheod to determine the as-
trophiysical rate at zero energy would be very useful. It twns out that the S-factor
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at Zero ensrgy Is dependsant on the ANC but not on the contimmm properties. An
exparimental measurement of the ANC will therefore determine S(EA = Q) for a
given reaction of interest [33, 34].

We have seen that the ANC values can be extracted by suitable transfer experi-
mments. Inaddition, recent work shows that breakup predictions are sensitive mainly
to the asymptotic properties of the projectile [35, 36, 37, 38]. Both the ANC of the
initial bound state and the phase shifts in the contimmm play significant roles in the
disseciation process. If the continuum structiure is sufficiently well known to pin
down the phase shifts, and the breaknp mechanizm is well modeled, normalization
of the brealmp cross section should provide an accurate wavyto determine the ANC.

145 Charge-exchange spectroscopy

In Chapters 1 and 12, we saw that some weak interaction rates are needed for de-
termining &-decay rates back to stability in element nuclecsynthesis. These are
telated to the spin and isospin responses of nuclel, which iz usually measured
through charge-exchange reactions. The simplest charge-exchange reaction Is the
{p.n) reaction with AT, = —1. Alternatively one can also use (*Het) or heavy-
lon charge exchange. For populating states with AT, = 41, one can use (n,p)
reaction rates, but (d.2p) and (t,*He) have also been used on stable nuclel, and
more recently ("L, "Be) has bean atterpted on unstable systems. For an overview
of experiments on charge exchange see [39]. The (p.n) and (n,p) reactions probe
the responss in the nuclear interior, whereas reactions with the composite probes
(A = 3) are more surface peaked, with (d,2p) being in between [40]. Obviously
(d.2p) has the additional complication of a three-body final continunm state. The
use of composite systems as probes adds complexity to the reaction model, so here
we start with the (p.n) reaction. We use the Fermi and the Gamow-Teller transition
operators introduced in subsection 5.4.2 (my -1z and (oy - o) (71 -7 respectively),
and their reduced transition probabilities defined by Bqs. (5.4.2) and (3.4.3).

For (p.n) reactions at energies above ~100 MeV, and for the cross sections at for-
ward angles, the reaction can be assumed to take place in one step. Thus the transi-
tions between target states |I;M;) and |[TpAd ) are typically evaluated in first-order
distorted wave approximation using an effective interaction between the proton
and the nuclecns In the target [42, 43]. At backward angles the two-step exchange
transfer mechanism becornes dominant, so in first appreximation, for extracting
Ferrol (F) or Gameow-Teller (GT) strengths, only forward angles would be useful
When nucleons are identical, one needs to Include exchange effects associated with
antisymmetrization. The general transition amplitnde 1z

TRY = _[X{f_}(kf: p)" Ugi Xilks 5] dip, (14.3.1)
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Fig 14.1%. Differential cross section for the charge-exchange reaction ¥Niit,*He) as a
function of the angle of *He in the center-of-mass frame [41]. Different lines correzpond
to the contributions of different partial waves. Reprinted with permizzion from A L. Cole
efal, Fhys. Kev 74 2006)034333, Copyright (1997 by the American Phyzical Sociaty.

with U = (IpMy, 2] 2o V(1 — Fy )| Ti by, 213}, where Py represents the
permmtation g« § of spatial, spin and isospin coordinates. It can be shown that
the transition amplimde of Bq. (14.5.1) can be factorized into a stricture part and
a reaction part, as explained in [44]. Here again elastic scattering data should be
used to fix the optical parameters, as the dependence on optical potentials can be
ag large as 20%. An example of DWBA predictions for a charge-exchange reaction
iz shown In Fig. 14.13 [41], which connects back to the v-process as discussed In
Chapter 1.

Cre can further simplify Bg. (14.5.1) assuming plane waves or the eikonal ap-
proximation. If the mementurn transfer could be zero, there would be a direct
proportionality between the cross section and the F/GT strength [45]:

de _ _ E{,Ef T

(4= = Ny e FB(E/GT), (145.2)
with £, &y the relative energy in the entrance or exit channel. The Jrpr Is the
volurmne integral of either the 7 component (for Fermi transitions ) or the o7 com-
ponent (for Gameow-Teller transitions) of the effective nucleon-nucleon interaction
and IV iz a factor that corrects for the plane wave approximation, and accounts
for the miclear distortion. Generally, to fix IV, Gamow-Teller reqults need to be
calibrated using strengths known directly from §-decay [45]. The cross section
at %(q = 0] can never be measured for reactions with non-zero §-value, so a
common practice iz to use cross sections measured at 0% (where g Iz smallest) and
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combine thern with DWBA ratios to extrapolate to ¢ = 0 (thiz is impeortant for com-
posite particles). Ancther approximation is to neglect the exchange componant (or
simplify it).

We make some additional comments pertaining particularly tothe Gamow-Tellar
transitions. When using composite probes, there 1z a larger mimber of spin and
Isospin combinations allowed, and further complications arise when several com-
binations contribute to the same level If J iz the change intotal spin of the target In
the charga-exchanga reaction, J = L 4 8 (the transferred total angnlar momantim
is the sum of the orbital angular mementurn and the transferred spin). Thiz is the
case In the example shown in Fig. 14.13. For GT transitions we are most interested
in 5§ =1, but there may often be several L components contributing to the same
state. If there Is no interference, components can often be disentangled as dene in
[40]. Howevear, when tensor terms are included in the operator, a large source of
uncertainty comes from the interference between the various L components which
cannot be determined experimentally.

In order to cireumvent these uncertainties, the best approach iz (as before) to
Introduce the relative amplindes from a shell-medel caleulation, and to use the
overall comparison of the theory predictions with experiment to conclude about
the accuracy (or otherwize) of those shell-model wave functions.

Exercises

14.1 Conzider the tranzfer reaction SEGc(d,p]lS3G: measurad in imverse kinematics at
4 eV [48] with the aim of extracting a spectroscopic factor  The deuteron
wave function can be calculated vsing 2 simple Gaussian interaction Vi(r) =
— T2 15exp(—(r f1.484)%) that binds the proton and the neutron in an s-state at
2.2 MeV

{a) Analyze the shell structure of ¥ Ge and determine the (12,1, §) orbital for
the transferred neutron. Use a standard radius & = 1.2AY?® fm and dif-
fuzenesz @ = 0.65 fmy, fix the spin-orbit strength to 7 MeV with the same
geometty and adjust the Woods-Zaxen depth V.. to reproduce the cormect
binding energy for this single-particle state.

(b} UsetheKoning and Delarochs global parametrization and the Tohnzoen and
Soper approximation to determine the optical potentialz in the entrance
and «xit channels.

(c) Calculate the DWBA tranzfer cross section in zero range. How large is the
finite-rangs correction within the local energy approximation?

(d) Calculate the cross section in finite angs without remnant and compars
with the cztimatez obtained above.

[e) Calculate the DWBA finite range with full complex remnant and compare
post form with prier form.

if) Compare your calculations of 1-step DWBA with the data and extract a
spectroscopic factor from the normalization of the cross section 5% =
E—E;;g . How do yourrezults compars with those in [46]7
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(5]
[a]
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[8]
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[11]
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[23]
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(28]
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apectroscapy

[g) Tterate the transfercouplingin a coupled reaction channel procedure. How
margy iterations do you need for convergence?
Proton inelastic scattering of 522i at42 MeViu was studied to determine the BE2)
[25]. In that work a deformation of Fz = 0.28 was extractad for #2580
(a) Obtain the optical potential for the problem from the global parametriza-
tion of Koning and Delaroche.

(b} Calculate the inelastic scattering in DWBA and compare the differen-
tial cross zections when you include only nuclear deformation with those

when both the nuclear and the Coulomb potentials are deformed.
ic) How sensitive are the results to the choice of optical potential ?

(d) Perform a full coupled-channels calculation and estimate the error in the

Bz extracted in the analysiz of [23].

[e) Compare your results with the data in Fig. 2 of [25] and adjust g; to fit

the data.
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15
Fitting data

Wt have to remember that what we obzeres i= not nature herseH,
but nature expozed to our method of questioning.

Wemer Helrenber

Given the R-matrix, DWBA or coupled-channels theories of the previous chapters,
we now discuss how to vary any unknown parameters to fit experimental measure-
mments. The fitting parameters of a reaction model could be those which specify
Woods-Saxon potentials, or they could be structural parameters such as deforma-
tions or spectroscopic factors. Sormetimes the paramneters linearly determine the
model predictions (such as spectroscoplc factors in one-step DWEBA), but more of-
ten the predictions depend non-linearly on the model parameters (2specially those
defining the potentials). When there are multiple non-linear parameters, more sys-
ternatic methods are needad.

Data fitting is thus the systemnatic variation of the parameters p; (7 =1, ..., F)
of a theory in order to find a parameter combination which minimizes the dis-
crepancies with experiment. This iz most commenly dene by minimizing the 32
meaqure of these differences, as defined below, and in Section 15.5 we discuss
strategies for this minimization.

15.1 »* measures
15.1.1 Specifications

We want tocompare theoretical with experimental cross sections, and use this com-
parison to improve the theory Input parameters {p,} so that observed and predicted
cross sections agree better. Let the experimental cross sections be o®%(4) from ob-
servations at angles &; and (possibly identical) energies £5,¢=1,2,..., N. Sup-
pose that these experimental results o=%({) are randomly distributed, with standard
deviations Ad (i) as absolute errors. Tf a theoretical model predicts values o (z)

304
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at the same angles and energles, then the standard measure of thelr discrepancy is
the &% sum

(o%(6) — 0=(3))?
Z M) '

(15.1.1)

If the theory and experiment agreed exactly, then ' = 0, but that is statistically
unlikely because ofthe random errors Aa(€) In each data point. Bven Hthe theory
i1z completely accurate, the moest likely outcome Is that the discrepancy between
theory and experiment will be of the order of Ao({), one standard deviation error In
the experimental value. This implies that the best achievable A% value is obtained
when each fraction (0®® (i) — o (¢))%/Ac()® is of the order of unity, so that
A% ~o N For this reason, we usually describe a fit in terms of the value of &% /N:
the X'% per degree of freedom.

The best to be expected in practice is that X% /N ~ 1. I X% /N 3 1 then the
data is not yet described fully by theory. If A% /IV < 1, then the statistical improb-
ability of this ‘perfact fit’ Implies that the errors Ao(d) have been overestimated.
This would occur if systematic or scaling errors had been Inclnded by mistake In
the value of Ag(i) for each Individual error. The values of Aa(€) are supposed to
be the one-standard-deviation errors and all statistically independent, which means
that evan the best curve should miss every third arror bar.

H there are uncertainties in the overall scaling of the experimental cross section,
then the actual scaling factor s should be regarded as another parameter to be fitted.
I the expected value of 5 is £s] (usually unity) but the Lo uncertainty around £3]
is Az, then the &% sum should have an extra term (s — £[s])% /As®, and appear as

_ (s— E[)* E[s (o (i) — 5 o=P(4))®
x° Z Ao . (15.1.2)

The A% per degree of freedom s now A%/ W 4+ 1) because of the additional ‘data
point” £s].

15.1.2 Mubltivariaie theory
Multivariate normal distribution

In order to understand the principles underlying x* measures, we need first to know

the general probability distribution for a set of random variables (‘variates’) z;.
We use the notation £'[X] as the expecuation value for some exprassion X de-

pending on x, the value averaged over the probability density function fiz) for A
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E[X] = fX Flz)de, (15.1.3)
so the variance iz
Al = Bl(z — u)7] = Bl2f] - usl2] + 4f = Bl2®] - pf (15.1.4)

and the standard deviation A = +/&[{z — p)?] is the root mean square deviation
frommn the mean.

H we have no other knowledge, we would generally assume that the variates x;
follow wnermal distributions, for which the standard probability density function for
a single variata iz

1

2T A

whan the mean is x = £[z] and the standard deviation A where A% = B[z — u)?]
izthe variance.

flz) =

_oaz
exp [-%} , (15.1.5)

For many correlated variables x = {z1, ..., zy}, their joint probability distri-
buticn iz the more general formmla [1, p. 62]

7o) = m) IV ep |- Lae- WV - )|, QsLg)
2
where p iz the vector of means, and W is the symmetric cowrriance matrix

Vi = Bl — i) (25 — )], (15.1.7)

and [V iz its determinant. The diagenal elements Vy; of the covariance matrix are
the individual variances A%, and its off-diagonal elements are

Vi = oyl (15.1.8)

where gy are the correlation coefficiants between the fluctuations of the data peints
z; and x; about thelr respective means.

The X2 sum

The probability that a single data point @, with variance AZ is correctly fitted by a
prediction ¢4 may be found using Eq. (15.1.5):

[_L - %)2] , (15.1.9)

fﬁ(yij = 2&2

JarA, ¥
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For many statistically independent data peints z;, the jolnt probability of being
correctly fitted by g 1s the product of such single probabilities, giving

W 1Ol (s — )
Fo = (2r)~FA T exp [_EZ%I (15.1.10)
i=1
= 2m~TA  exp [—%x?-] , (15.1.11)

once we define A = ]_ji"r My and

M (s — )
A:‘”:Z%, (15.1.12)
i T
using the definition of Eq. (15.1.1). Here, we write x; as the data value for which
4 1z the theoretical prediction.
Comparison of Bq. (15.1.11) with BEq. (15.1.6) shows that a generalized defini-

tion of the &% sum, suitable for correlated data, is

A = (x—y)"V 1 x— 3 (15.1.13)
W
= > (@ — pdV iz — u). (15.1.14)
if=1

where ¥V 1z the covariance matrix of the data peints. It Iz thus called the data
covariance matrix

In both cases, minimizing & g aquivalent to maximising Fyo, the probability
that the statistical means of the data pelnts x are described by the predictions ¥.

The x° distribution
H we add together IV squares of independent normmal distributions, z;, with zero
mmean and unit variance, then the sum

I
A% = z= 15.1.15
T
i=1

has what Iz called a X?N} distribution. This is the well-known probability distribu-
tien already defined in subsection 11.1.1:

1 z %—1 _z
FIXE = T (H’T) e (15.1.16)
z

which has mean, variance and standard deviation

EX* =N, V(XY =2N;, ofX%) = 2N, (15.1.17)
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The I'(z) 1s the gamma funetion, I'(z) = (2 — 1)L
For large IV = 20, the XENII distribution iz approximately normal with the means

and variances of Bq. (15.1.17). Hence /N is also approximately normal with
mmean 1, and standard deviation +/2/N.

FPerfect and non-perfect fits

The optimal fit of a set of data occurs when the theory predicts exactly the statistical
mmeans of all the experimental values. Thiz iz not to give the actual values on any
particular cccasion, but the average i the same experiment were repeated many
tirnes at the same angle and the same energy. In this ‘perfect’ case we have g; =
Elz;] = pis, and the value of &% is a summ of terms

z_ %= %) (- i) "
"TTAE T A
so the 2z would have zero means and unit variances. If these were normally dis-
tributed, then the sum A* = Z:‘r z¥ would follow the XENII distribution, which
we saw above has mean IV and variance 28 . This is the reason we stated earlier

that tha best to be expactad in practice is that A% /N ~ 1, and that (for a good fit)
deviations both above and below unity are statistically improbable and must thus

(15.1.18)

have other reasons.

Non-parfact fits will therefore vield larger A'2/N % 1 values, and will have
been constructed from 2% with different statistical properties. If the z; means are
non-zero but their variances are still unity, then &' will follow what is called [1, p.
64] a ‘non-central x? distribution with & degrees of freedom’

More generally again, when the parameters giving the predictions ¢; have been
estimated by those values which minirmize X% the distribution &® is no longer
XEN]" The minimum value of A2 iz then the sum of squares of correlated, non-
central randem variables of non-zero mean, which are not, in general, normmally
distributed, and hence difficult to caleulate. Heowever, we can still mimerically
search for a minimum of &' as a function of the theory parameters, to find p* =

p%, ..., P}

Properties of the X° minimum

Once we have found a smooth local &'% minimum for parameter values {g0 }, the
A% function will have zero first derivatives. Tt will hence be well described by a
cmltivariate Taylor serles, which up to the first-order terms Is

Is
A pry b)) = XY, PR 43 Y Hunl(bm — 5] (0n — 23)

mn=1

= X*p" + 3(p - ") H(p - p"), (15.1.19)
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where the matrix of second derivatives, the Hesse matrix H, is

5,2
Hen = mﬂm, L PP (15.1.20)

H we now substitute Bq. (15.1.19) inte Eq. (15.1.11), we find that, as the pa-
rameters are varied around the minirmum point, the fitting probability By changes

to
b=
1 X% 0 a
Ba=—>¢ = -1 —p2H - (15121
= I:Q’FT:J %& X n %(pﬂ% pm) mﬂ(pﬂ pﬂ-) 'i ;'

This probability of the data being fit by the theory can also be used for ficad data
peints, to show how the fit varies when the theery parameters are slightly changad.

The fitted parameters pf will in genaral have correlated arrors, even if the orig-
inal data had unceorrelated errors. We may therefore define a parameter covariance
coatrix by

VE = El(pm — P (n — B)] (15.1.22)

for m,n = 1,..., P, the mmber of parameters. If we compare Eg. (15.1.21)
with Bq. (15.1.55), we see that it describes a mnltivariate nermal distribution for the
parameters p if we ldentify

(Ve)™ ' =2H or VP =2H (15.1.23)

This impeortant equation allows us to extract the correlated variances of the ex-

tracted parameters from the proparties of the &'? surface around its minimum point.

Moreover, from Eq. (15.1.5), we find that the 15 deviations away from a mean

are when the exponential in the normal formula is % Thiz implies that the set of

parameter cornbinations that are 1o away from the minimum may be determined
from

F
3> (P — PrHmal(pn — 23) = 1, (15.1.24)

T

and hence, even more simply by using Bq. (15.1.19), when

Ay, ypE) = XY, L PE) + 1. (15.1.25)

The sets of parameters satistying this condition will in general be multi-dimensional
ellipses around the minimum peint. These reslts for parameter correlations will
be used in mbsection 15.53 3.



400 Fitting data

15.2 Fitting cross-section harmonic mrmltipoles

The simplest description of an angular cross section iz as a linear combination of
Legendre polynomials

o(8) = 3 as Pafcos ), (15.2.1)
A0

for some real cosfficlents aa which could be determined from experimental data
by e.g x° minimization. The comparison of theory with experiment is most often
dene by comparing cross sections directly, but is sometimes parformed by compar-
ing the fitted and predicted values for these coefficients, a procedure which iz most
practical at low energies where not too many A values are needad.

To find the theoretical predictions for these cosfficients, we note that in Chapter
3 the formulae (3.1.46) and (3.2.21) give the scattering amplitnde f{#) az linear
combinations of Legendre peolynomials: of Pricesd) in the single-channel case
of Bq. (3.1.46), and of assoclated Legendre polynomials PP (ces#) in the multi-
channel case of Bq. (3.2.21). If the square modulus o = |[f(#)|® for the cross
saction iz expanded Into a sum over two partial wave indices, then each term will
contain a product of two Legendre polynomials. We will see below how the sum
of all these products can be rewritten as a sum exactly of the form (152.1).

Legendre expansion does not work with the peint-Coulemb scattering ampli-
tude, since the partial-wave series of BEq. (3.1.80) with Coulomb phase shifts does
net converge. We therafore restrict ourselves to neutron alastic scattering, orelse a
non-elastic cross section. From the general form of Eq. (3.1.46), we have

oo z

a(#) = %Z(EL-I—I)PL(COS ATy
L=0

= %Z(QL-I—I)(QL’-I—I)PL(CCGHij(cosﬁ)TETLr. (15.2.2)
LLt

The product of two Legendre polynomials for the same argument is
L4L!

P(z)Pr(z) = % (L0,L'0JAD)E Pa(z), (15.2.3)
A=|L-Lf|

where (L0, I/0|AQ) 1z a Clebsch-Gordan coefficlent. Neon-zero contributions re-
quire even values of L+ L' +A.
We thus derive the general form of Bg. (15.2.1) with coefficlents

1 .
an = 3 > (2L+1) (2L H1) (L0, LOAC TE T, (15.2.4)
LLf
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Mote that «; iz proportional to the angle-integrated cross section of Bq. (3.1.50) by
Fint = direag, so often it is convenient to write

o(8) = E’: [1 + 3 s Pafcos a)] (15.2.5)
A0

where &y = ap /g = dmay /oy These coefficients are a convenlent way of de-
scribing and fitting the angular variations in cross sections obtained at low anergies,
when there are net too fany partial waves invelved.

When some of the initial and final participating nuclei have non-zero spin, the
above procedure may be repeated starting from Bq. (3.2.21). Because the cross
saction (3.2.17)in this case is a sum over all the magnetic substates of the nucleus,

the Legendre expansion ofthe cross section iz still in terms of simply the Pr, as in
Eq. (15.2.1).1

15.3 Fitting optical potentials
15.3.1 Senmsitivities

Fitting the parameters of optical potentials to angular distributions iz not always
ag simople as expected, because the sensitivities of the angular distributions to the
optical potential vary a lot with the angles and radii under consideration.

The most cbvlous example is the diminishing effects of optical parameters on the
forward-angle elastic cross sections, due to the fact that the potentials go to zero as
— Vs exp(— (B — Fys) fa) outside the sum of the radii of the nuclel The Coulomb
repulsion at radins R scatters to forward angles 6 = 2n/Rk by Bq. (3.1.76), so
cross sections at small angles should become equal to Rutherford o ~ opyy of
Eq. (3.1.82). Thiz fact can often be used to check the normalization of the experi-
mental cross sactions, by comparison to the Rutherford cross section at the smmallest
anglas.

The spin-orbit potentials described in subsection 4.3.2 have thelr biggest effacts
on the vector analyzing powers 1737(#), but still have a small influence on the
elastic cross section o#). If a polarized projectile or target enters into the reaction,
then it iz eszential to Include the spin-orbit forces for that nuclens.

15.3.2 Ambiguities in apiical patentials

There are three principal kinds of ambignities in fittfing optical potentials, one kind
agsoclated with phase shifts at low energies, another with potential volume in-

! The Iegendre expanzioms for tensor analyzing powers Thy (7)) of Eq. (3.2.28), by conlrast, rquire azsociated
Legendre polynomials PLM{S} foro = M =g
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tegrals at low energies, and the third concerning surface properties in heavy-ion
scattering.

The acattering at the lowest energles Is determined by the phase shifts, and the
pattern of phase shifts is largely unchanged i the potential is changed in depth so
that the nearest bound or resonant state in a given partial wave remains the same
distance from threshold. Ifthe potential iz made significantly deeper, then a bound
state would have an extra node, and guidance from shell-medel filling orders may
then be usad to resolve these ambignities.

At medinm energies, it iz often posgible to make small changes in V,, and R,
while keeping Vi Fis,, approximately constant, and net change the quality of the
scattering fit. In these cases, the velume [mtegral of the optical potential

[eon)

J = f Virjdr = 44rf Viriridr (15.3.1)
a

iz determined more precisely than the detalled parameters. Mucleon scattering po-

tentials for targets of slze A are generally expected to scale as 7 ~ A% for

Jo s= 450 MeV at zero energy.

For collisions ofheavier nuclei, ‘grazing’ collisions are those in which the sami-
classical impact paramneter & = Lk are comparable to the sum of the radii of the
Interacting nuclei. Any collisions closer than grazing will almest certainly lead to
strong imaginary parts, because of the great probability of flux leaving the elastic
channel. In such reactions, the diffraction that cccurs for grazing Impact parame-
ters will be governed by just the tail of the optical potentials at £ 2 Ay + o In
thiz region, the real part 1z

V(R) ri —Vyge i fwalfaws — _y o Fenfaws o= Riaws 1539

and hence e and Vi, may be varied togsther as long as Ve gltwa/dwa i constant,
because only the exponential tall is Important. In this case, it is good practice to
plot ¥( K} in the surface region for a set of fits, to see in which radial region its
value iz “well determined” See the examples for 150 [2] and "He scattering [3] on
lead around the Coulemb barrier.

15.4 Multi-channel fitting
15.4.1 Elasiic fiés

H a fitted optical potential 1s used as a diagonal potential in a coupled-channels
gystem, then the predicted elastic cross sections will be different from the one-
channel case, becauss ofthe extra coupling terms. Consider again the two-channel
scenario on page 323. In this case, the dynamic pelarization potential will have an
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Imaginary part that reflects the loss of flux from the elastic channel 1 into the non-
elastic channel 2, and will also have a real part that may medify potential barriers
and hence any low-ensrgy tunneling probabilities.

This means that we st distingnish eptinal petentials, which fit some experi-
mental data, from the bare potentials T, T that are the diagenal potentials to be
used in a coupled set of equations such as Bq. (11.5.1). Because of the dynamic
polarization effects arising fromm the couplings, the bare potentials will be different
from any optical potentials. The bare potentials will typically have weaker imag-
Inary parts than an optical potential, since the imaginary part of a bare potential
iz used to describe the loss of flux out of the madel space, which iz lass than the
flux leaving the elastic channel since the non-elastic channel 2 Iz still part of the
coupled-channels model space.

Different strategies may be used to deal with this difference, in order to solve
coupled-channels equations while fitting elastic data. Owe s to Initally ignore the
DFPF, start with a bare potential equal to an optical one, and then later fake small
corrections to the parameters of the bare potential to Improve the fit. Typlcally,
the strength of its Imaginary part will be reduced by small fractions in order to
restore the elastic fitt A secomd strategy Is redo the entire fitting of the optical
potential, now including all of the equations (11.5.1) within the search process.
This is probably the mest accurate strategy overall. A thind strategy, however, may
still prove useful: this is to artificially set to zero the reverse coupling V75 that feeds
back to the elastic channel. This means that the elastic channel still reproduces the
result of the optical potential, so this strategy 1z ancther form of the distorted-
wave Born approximation intreduced on page 100, This step dees not require the
couplings to be small, as we only argue that the DFP is already included within the
optical potential, since it fits the experimental scattering, and therefore the elastic
fit should not be disturbed by couplings becauss this would count the coupling
effects twice.

15.4.2 Fiffing inelastic seattering

To fit the inelastic scattering of a micleus to states in its rotational band by the
collective mechanisms discussed in subsection 4.4.1, we normally procsed in two
steps. Fixst we use a simple first-order rotational medel with quadmipele cou-
plings to construct transition potentials between states of the rotational band, the
only unknown parameter being the deformation #; (or deformmation length 6, or
the Coulomb reduced oatrix element) which linearly scales the potential. This
transition potential will have both nuclear and Coulomb contributions, but these
usually scale in the same way. Then, comparizon with the overall magnimdes of
the obsarved inelastic cross sections will give a good estimate of the deformation.
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Afterwards, the fit can be Improved by detailed adjustments of the optical potantial,
Inclusion of the deformnations non-linearly ag in BEq. (4.427), possible fy effects,
dlong with the coupled-channels effects from moultiple couplings. If necessary,
the Coulomb and nuclear deformations may be made different: the Coulorb ma-
trix elemnents will particularly affect the forward-angle cross sections in a way that
srongly depends also on the excitation energles of the levels in the rotational band.

15.4.3 Transfer fits

Transfer reactions are individually rather weak processes, and so most coromonly
are treated in first order in some kind of Born approximation. As mentioned in
Chapters 3 and 14, that approximation iz equivalent to neglecting some set of re-
verse couplings.

The simplest transfer model, therefore, s the one-step DWEBA, in which optical
potentials are used for both the entrance and exit channels and the transfer coupling
iz taken to first order, to couple just the entrance to the exit channel (and net alse
the reverse). This then becomes exactly the DWEA considered on pages 100 and
371, where the entrance optical potential reproduces some elastic data of these
miclel at the needed or a nearby ensrgy. In first-order DWEA, the cross section is
exactly proportional to the spectroscopic factor & according to Bq. (14.1.1). We
might therefore attermpt to find the empirical spectroscople factor as that which
scales the theoretical (5=1) curve to best reproduce the observed transfer angular
distribution, especially its forward angle or largest peak, which might contribute
mest to the total cross section.

The secend-simplest model s one In which other inelastic couplings are permit-
ted to act to higher or all orders, but the transfer coupling still only to first order.
This scheme iz the CCBA, or coupled-charnrels Bark approximation. One of the
participating nuclel, for example, mmight have a rotational band that can be eas-
iy excited. MNote first that if all the couplings were only from and to the ground
state, then these rotational effects would have already been Included in the en-
trance optical potential. A more detailed treatment s necessary, therefore, if there
are transfars to or from exclted states of the collective bawrd. Inthis case, at least the
CCBA scheme iz essential, as multiple routes to a transfer state are possible. There
could be transfers from ground state to ground state, or first an excitation and then
a transfer, or an excitation followed by transfer followed by a de-excitation. These
higher-order routes with increasing numbers of steps become individually less sig-
nificant, but may be egsential if for some reason the direct route iz suppressed on
structural grounds, or i there are musy such intermediate steps energetically al-
lowead. One complication to nete when mnltiple routes may contribute, s that then



155 Jearching 405

the relative phases become Important, as the amplitndes for the different processes
mmay interfere constictively or destructively.

The detalled shape of a transfer cross section iz affected by these higher-order
affects, and also by the features of the bound-state wave function that cornes, for
exarnple, from the geometry of its binding petential Transfers at sub-barrier ener-
gles are expected to probe only the remote tail of the bound-state wave function,
where its amplimde 1z governed mostly by the asymptotic normalization coefficient
(ANC) defined in BEq. (4.5.24). As shown In subsection 14.1.4, we may expact
lowr-energy reactions to determine these ANC values to good accuracy. At higher
anergies, above the Coulomb barrier, there will be more penetration to the surface
and perhaps into the interior, so more global properties of the transfer wave fune-
tion govern the cross section. We saw in Section 142 how a wider salection of
expariments at different energies iz needed to probe the entire wave function.

15.4.4 A Progressive Improvement Policy

We may summarise the above strategles for the detailed fitting of experimental data
ag arlsing from a ‘Progressive Improvement Policy’. Fitting data, by this policy,
chould start with the simplest data and the simplest reaction medel. In meost cases
thiz should be elastic data and some optical potential, preferably over a range of
energies so that local peculiarities or resonances will not upset the medeling. Then
for inelastic excitation, transfer or breakup, one-step DWEBA should be used to fit
speciic final states that can be reached from the initial bound state. Only after
that has been done and the results studied, should more complicated models be
emploved, such as those with inelastic excitations in the entrance or exit channels,
or those with two-step or coupled-channels transfers.

Only in special cases should coupled channels be started at the beginning, such
as those where the entrance optical potential Is unknown and has to be calculated
dynamically, including the effects of many inelastic or breakup couplings.

The progressive improvement policy is also particularly useful during 3 searches,
as we sea next.

15.5 Searching

The task of searching iz to take a defined set of theoretical parameters which may
be medified (perhaps with experimental abselute normalization factors), and nu-
merically vary these in a systematic way while monitoring the total &'® value, un-
til X% becomes as small as possible. For linear variations this can be achieved
by solving simultaneous equations, but for non-linear problems as here, iterative
searches are necessary. A widely used toeol to achieve this Is the program MINUIT
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[4]. Within this suite the most efficient minimizing technique is called MIGRAD,
and this iz a gradient search methed using Fletchar's switching wariation [3] to
the Davidson-Fletcher-Powell variable metric algorithm [8]. It appreaches a local
moinimnm clesaly and generates parabelic error estimnates, which will be true errors
when the &' % function around the minirurm is accurately quadratic with respect to
each parameter according to Eq. (15.1.19).

15.5.1 Sirategies
Tt is useful to remember the following strategies for 3* searching:

(i) The process can be restarted from any intermediate stage, if subzequently cither
strange or no results were found. Intermediate sets of pammeter values should
therefore be zaved during the search.

(i) Ambiguities in searching can be dealt with by means of grid searcher. That is,
if for example there iz a mutual ambignity between R, and V., then searches
should be conducted for finite increments in ... In thiz case, the potentials for
cach A, value will, when plotted, often cross at a * sensitive region’ for the scatter-
ing. Without grid searches, seamching ambignitiez will give highly correlated ermors
betwesn the related wvanables. These correlations will be discuzzed below.

(iii) Discrete ambignities, such as those which change the number of nodes in the wave
functions for low-energy scattering, require specific restarting of a gradient search
with increazed or decreazed potentialz. The requined potential depths may be = zti-
mated by finding what iz needed to change the number of nodes in a one-channel
bound state.

(iv) If some features of the data are never fitted properly, then the ermror bars for thess
data points can be temporarily reduced by a factor of zay 10, to increase their im-
portance in the v® sum. You can then learn what in the model is sufficient to fit
those features, and perhaps reconsider the model to make this eazier when the emror
barz are reztored to their realistic valuez.

(w) Ifa parameteris given a limited ranges and then ends up near one end of this extent,
then the MIGRAD procedure often give: a spurious comvergence with respect to
itz variation becausze of the way it internally maps the limited range. Apparently
comnerged rezults with one wariable near its limit should always: be repeated with a
wider range allowed.

(vi) Sometimes, instead of searching for two comrelated wariables, they should be com-
bined into one variabls. For exampls, in one-ztep TWEA the teo projectile and tar-
get spectroscopic factors must be combined [or elze one of them fixed). Similarly,
if both & bound state and scattering data are to be fitted with the same potential,
it may be pozzible to find the bound state firet and reset the potential depth to that
neceszary for this exact eigenstate.

During the search process also, we may apply the Progressive Improvement Pal-
icy outlined above. The initial stages of a %* search should use the simplest re-
action theory that gives plansible results for the meamrements of Interest. There
Iznoharm In making approximations to the scattering theory at early stages (such
as zero-range rather than finite-range transfers, or omitting Coulomb excitations
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at large radii, or using the W EBA rather than finding coupled-channels solutions),
and a lot of time can be saved by making these approximations initially. Then,
after an apparent convergence, more details of the reaction theory can be Inserted,
and/or the existing theory caleulated more accurately. After these model improve-
ments have been made, the search procedure can be restarted for progressively finer
readjustments.

15.5.2 Thearetical expeciations and the Bayesian methad

Theoretical expectations mmay arise if we want to nclnde the effects of prior ex-
perimental results. Some of those prior results may be built into strong theoretical
expactations — such as the radii of muclel as measured by completely independent
and verified electron-scattering experiments. Cthers may be simply the current ex-
perirment at ancther energy. Lifetime measurements may have given deformations,
and cther transfer reactions may have suggested spectroscopice factors. In all cases,
thiz inforrnation should be taken into account when performing the current search.

In the A% method, the results from other experiments may be used to give values
and error bars for some of the current search parameters. As long as the param-
ater 1o errors from those experiments are known, they may be used to constrain
a present search by including an extra contribution to the A% sum, as in the form
shown in Bq. (15.1.2).

A mere systematic methed for inclnding prior statistical informnation abeout the
theoretical fitting parameters Iz to use the Bayesiaon method for the fittng. Such a
procedurs iz used, for example, in the SAMMY code [7] for R-matrix fitting. This
yields the same results as X' -fitting if there are no theoretical expectations, or at
the beginning of a search when the dependences are non-linear and the parameters
are unknewn. It requires Input uncertainties for all its parameters (whether sall,
or effectively infinite), and the action of the Bayesian method iz to reduce these
parameter uncertainties. The method has the advantage of not being sensitive to
the grouping of experimental data, unlike the &% method.

15.5.3 Error estimates from X° fitting

Using the %'* expression of Bq. (15.1.1), the Bg. (15.1.25) tells us that the simplest
estirnate of the error in each the fitted parameters 1s that variation which increases
A% from its converged minimum by unity (so X%/ is increased by 1 /N for N
data points). These parameter errors ghve a very ussful estimate how the parameters
are fixed by the given data. MNote that if the errors Ao(d) are all overestimated by a
factor A, then the resulting parameter errors from the fit will also be overestimated
by the same factor A.
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To examine correlations between the fitted parameters, we need to look at the
grvor matric: the parameter covariance matrix WP, such as that caleulated by
Eq. (15.1.23). This is twice the inverse of the Hesse matrix Hip, of partial second
derivatives of &% defined in Eq. (15.1.20). The errors based on the error matrix
take account of all the parameter correlations, but not their non-linearities (the 2o
arror will be exactly twice the 1o error estimate). When the covarlance error ma-
trlx has been caleulated, the parameter errors are the square roots of the diagonal
alaments of this matrix, which inclnde the offects of correlations with the other
parametars.

These correlation affects are included bacanse the inverse of the arror matris, the
second derivative Hesse matrix Hqpn of Bg. (15.1.20), has as diagonal elements the
second partial derivatives 8%(A'%)/8pE with respect to one parameter at a time.
These diagonal elements are not therefore coupled to amy other parameters, but
whan the matrix is inverted, the diagonal elements of the Inverse contain contribu-
tions from all the elements of the second derivative matrix, and thus includes the
correlation effects on the individual errors.

It is also instructive to look at the matrix of parameter corvelation coeflicients

Vin
VVEAVE,
found frem Bq. (15.1.8). Correlation coefficlents very close to one (greater than
0.99) Indicate a difficult or false fit, and oceur especially if there are severe ambi-
guities between two or mors search parameters. Thess would occur In an ill-posed

problem with more free parameters than can be determined by the model and the
data.

o = (15.5.1)

Exercises

15.1 Elaztic scattering of ®Li on *™Pb haz been measured near the Coulomb barrier
[&] at fise zeparate beam energics.

(2} Fit the slaztic within the optical model at ach zingle energy taking az
initial parameters for the Woods-Zaxon interactions: Vg = 40MeV: rg =
124m; ag = 0.64m and a volume imaginary part az V7 = 40MeV; 1y =
124m; a; = 0.64m. To begin with, neglect the spin-orbit interaction. Do
not start with a six-parameters fit but rather gradually allow for parameter
wariati onz.

(b} Compare the quality of the optical potentialz obtained in thiz way A
they energy dependent? Do they scale with the radius of the target?

e} Try alzo an optical-potential fit to the three energies simultansowusly and
coImmment on your results

(d) Etudy the sensitivity of your final optical pammmeters to the initialization.
In particular, analyze the correlation between parameters.
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(2} Repeat the procedurs assuming a surface imaginary component instead.
Determine which of the pammeter sets (volume wermuz surface) iz best
pinned dosm.

if) Include spin-orbit term and perform a new fit Can you improve the de-
scription of the data with this term?

Fit &5 and &; deformations to the o+ MNe inclastic cross sections at 104 MMeV of
[5], inthe (a) one-step DWBA, (b) two-step DWBA, and (¢} full coupled-channels
cazez. Can you fit Coulomb and nuclear deformations separately? How are the
results correlated?

Uszing a minimization search to fit a spectrozcopic factor to the transfer cross
section of BEx. 141 {or one of your cheice), vsing first DWBA and later CRC
reaction modelz. If there iz elastic data at that energy, fit the elastic and transfer
cross eections: simultaneouzly.

Fit an R-matrix pols to the p-wave rezonant phase shifts for n + o scattering of
[10]. Repeat with the s-wave non-rezonant phase shifts. Compare the quality of
the agreement with that from fitting a local potential similar to that used in [11].
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Appendix A

Symbols
Meaning Eq., §
matching radins (3128
scattering langth (3.1.05)
imag. potential diffuseness (31107
real potential diffuseness (3. 1.106)
transition amplitnde (732
Legendre coefficient (152.1)
impact parameter Eox 3.3
speed of light (1.1.13
lowear cutoff scale {6.3.4)
closest approach (7.3.5)
distances toc.m. (9213
unit electric charge (317
couplad eigenensrgy (0.5 18)
detector efficiency (B.2.37)
R-matrix pole energy (102113
scattering amplitude (2499
from k to k' (3.1.54)
with flux factors (2415
peint Coulomb (3 180
nuclear (3187
nuclear + Coulomb (3187
plans wave (3350
with g-exchange (34.15)
spin-& exchange (3417
WEB (74.13)
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3]
T2
T2
238
400
53

201
238
272
a0
216
252
201
45
a0
465
52
&4
&4
a7
Loy
108
242
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Serbe o

Fourler transform of f(r)

F-decay factor
2pe/ Rt scaled [V —£]
partial sum pelynomial
spin welghting factor
coupling constant vector

axial vector
couplad eigensolution
radial step size
currant

per solid angle

free flald

elactric

two-body

photon
nucleon £ & 3
momenta inc.m frame
photon momentum
Eoltzroann constant
local wave mumber
micleon partial wave
mass
unit atomic mass
number density

with excited states

photons
occupation mimber
quantum ceoncentration
number of radial nodes
rurnber of identicals
‘post’ or ‘prior’
momanturn operator
initial momentim
final momentum
fitting parameters
elactric charge
mmommentim transfer
transfer form factor

WEE phase

(5.2.3)
55.4.2
(6.1.5)
(6.3.33)
(3.2.31)
(5.4.3)
(5.4.6)
(6.5.18)
56.1

52.4
(2.4.13)
(3.1.08)
(3.1.101)
(3.1.103)
(3.5.30)
5.2
(2.4.4)
(3.5.17)
51.2

56.1

5.2
51.1.1
(4.4.7)
(1.2.2)
(123.15)
(12.1.33)
(5.1.18)
(123.9)
5.2
(5.3.13)
(4.5.6)
(3.5.18)
514.1.3
514.1.3
(15.1.19}
(3.1.101)
(7.2.9)
(4.5.13)
(7.4.4)

182
161
195
207
82
161
161
218
195
42
45
49
70
70
115
129
44
113

196
128

130

348
340
175
347
128
180
147
113
373
373
398
70

232
148
240
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w(E)
w(r)

y F)

En

Jron Mo
Fop Hity

S mbe

vector within a nucleus
valence-target vector
cora-targat vector
reduced imaginary radius
reduced real radins
root mean square rading
matching radins
rzaction rate (per sec)
nuclzon spin
core-(nn) radins
scaling factor
tirne
Isospin operators /2
projectile total isospin
half-lifa
symmetrising mmass factor
atomic mass unit
radial wave function
contimum
overlap
bin
velocity
projectile
valence particle
normalized overlap
channel eiganzolutions
rescaled wave function
partition index
rascaled radins
scaled nn distance
trial solution
scaled cinn) distance
auxiliary radial function

mmass nurmber of muclens
beam amplitnda
incoming coefficient
vector potential
time indepandant

(4.2.4)
(4.4.20)
(4.4.20)
(3.1.107)
(3.1.106)
(5.1.24)
(6.4.6)
(12.1.2)
5.2

Fig. 9.3
(15.1.2)
51.2
(3.4.4)
(4.6.4)
(12.1.7)

(6.5.22)
51.1.1
(4.2.4)
(4.2.9)
(5.3.4)
(8.2.1)
52.3
(7.2.4)
55.3.1
(5.3.7)
(6.5.2)
(7.4.2)
53.2.1
(7.4.2)
(0.2.8)
(6.1.6)
(0.2.8)
(6.1.10)

51.1.1
(2.4.8)
(3.2.9)

(3.5.2)
(3.5.11)

216

130
132
188
252
34

231
185
188
212
240
74

240
270
195
270
196

45
T
111
112
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Ff,KfﬂKT
F( )
Furias

o+

Serbe o

spectroscopic amplitnde
without Isospin
scattering expansion

antisymmetrization operator

level matrix
binding enargy
reduced
transition probability
branching raties
Coulomb constant
asymptotic normmalization
coefficient
Izospin amplitnde
2-body identical fraction
3-body identical fraction
sub-Coulomb vertex
mean level spacing
Zaro-rangs vertex
head-on closest approach
relative energy
eigenstata
complex pole
real resonance
forrnal
obsarved
total
photon
shell modal
within channel e
Gamow
affective burning
ragular Coulomb function
confluent hypergeometric
rmlfipele-A form factor
transfer
2/ RE [V — £ matrix
bin breakup amplitnds
spin cutoff factor
Grean's function

(5.3.6)
(5.3.11)
(6.5.6)
(9.3.7)
(10.3.28)
(1.1.1}

(4.4.3)
(113.11)
(3.1.59)

(4.5.24)
(5.3.11)
(122.2)
(122.3)
(4.5.20)
(113.1)
(4.5.18)
Box 3.3
(2.3.6)
52.1
(3.1.94)
(3.1.92)
(102.15)
(10221}
(2.3.2)
(3.5.17)
(5.1.12)
(6.2.6)
(12.1.18)
(12.1.19)
Box 3.1
(3.1.61)
(4.3.1)
(4.5.15)
(6.1.5)
(8.2.14)
(114.2)
(3.3.7)

185
187
213
278
301

138
313
5l

151
187
342
342
150
311
148
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S mbe

Grean's function with potential (3.3.40)

irregular Coulomb function
Gamow factor
angular function
partition function
Hanlkel funetion
diagonal matrix of H f
magnetic vactor field
Hasse matrix
Hamiltonian operator
¥+ particle
particle « -y
A-mnltipols part
Fermi part
Gameow-Teller part
general multipole
of nucleus A
affective
within channel e
thres-body
core
nucleus total spin
energy averaging Interval
total angular momentnm
projectile L 4+ 1,
potantial volume intagral
pear nucleon
c.m. momantum
partial wave K matrix
Incident wave number
hyperangular momentum

angular mementnm eperator

partial wave integer
typical I value
logarithmic matrix
Z-projection state

total z-projection

electric multipole operator
moment of inertia

Box 3.1
(7.4.22)
(9.3.3)
(123.13)
Box 3.1
(6.3.5)
(3.5.1)
(15.1.20)
(3.2.37)
(3.5.17)
(3.5.23)
(4.3.1)
(4.6.3)
(4.6.6)
(4.6.8)
(5.1.2)
(5.1.5)
(6.2.6)
(8.1.2)
(9.2.5)
(3.2.1)
(113.1)
53.2.1
53.2.1
(153.1)
(153.1)
(2.3.20)
(3.1.47)
(7.1.9)
(9.2.19)
(3.1.3)
(3.1.7)
(6.3.6)
(103.2)
(3.1.54)
(3.2.1)
(4.7.21)
(4.4.7)

224
224
273
51

201
208
a0
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Symbols 415

N neutron number gl.1.1 1
N pecillator quanta Table 5.1 171
Foic normm overlap operator (32500 BS
N production of ¢ from 7 gl2.2.1 342
Ni(gk) production of ¢ from jk glazl 342
Ny Avogadre’s number 1221 344
N, 1/, gl22l 344
& polarization obsarvable (32231 8l
P four-mementum {2321y 39
Bam] Pade matrix (6334 208
Fy; transition probability (7.372) 238
by penetration probability (r4lny 243
F penatrability (L0253 200
F probability distribution gl1.1.1 307
(o Porter-Thomas (11.1.1) 308
Fa 3% with = d.of. (11.1.3) 300
Eyy perctation operator (145.1) 380
FSon total joint probability (15.1.11y 397
] anargy released (1.1.3) 3

] quadrupole meoment (51330 L&D
e single particle momeant (5140 18l
Qe electric multipole operator (5.1.33) 180
&E(r) rescaled potential (7.4.3) 240
R,A separation of nuclei (2.31) 35
Fin outside potential §3.1.1 49
| in partition = §32.1 T4
R in body fixed frame #a48 140
R. cora-cora 4599 148
Frin lowear cutoff 8a.1 log
Fy surface radius 248 140
Rz partial wave R matrix (3.1.28) 55
R R matrix (6523 217
R unceuplad diagonal (05330 219
Riwt hybrid (l04.1) 303
B, rzal potential radins (3.1.108) T2
B oscillator radial form (5.1.99 171
b WED phase derivatives (74.3) 240
R £ 8-factor for neutrons (12.1.30) 339
Fia raduction factor (142.1) 384



416
S(E)

astrophysical 8-factor
affective
center-of-mass vector
channel spin
shift function
& — ad
Poynting vector
partial wave 5 matrix
nuclear
5 roatrix
with flux factors
elkonal
optical Limit
spectroscoplc factor
without Isozpin
expearimental

kinetic energy operator

ternparaturs

transfer multipele

a Jacobi coordinate set
temperature (GE)

tensor analyzing powear

tenzor force: radial
momantum

angular-mementim

total isospin operator
targst total Izospin
partial wave T matrix
T matrix
with flux factors
plans wave
distorted wave

distorted wave prior
distorted wave post

vector form T mmatrix
from potential 1

S mbe

from potentials 142
from potantial 2 with 1
exact

(1.1.4)
(12.1.27)
(2.3.1)
53.2.1
(102.4)
(102.15)
(3.5.27)
(3.1.30)
(3.1.84)
(3.2.10)

(3.2.12)
(7.2.13)
(7.2.18)
(5.3.9)
(5.3.12)
(14.1.1)
(3.1.2)
51.2

(4.5.12)
Fig. 9.4
51.2

(3.2.28)
(4.3.12)
(4.3.12)
(4.3.12)
(3.4.5)
(4.6.4)
(3.1.43)
(3.2.14)
(3.2.14)
(3.3.40)
(3.3.60)
(3.3.63)
(3.3.64)
(3.3.31)
§3.3.3
(3.3.33)
(3.3.36)
(7.1.19)

5
337

74
288
201
115
55
64
78

Ta

233
235
187
187
371
489

148
271

82
137
137
137
104
155
57
Ta
Ta
a7
100
101
101
a4
a4
a5
a5
227



Symbols 417

Tﬁﬁt exact prior (1412 371
Tt exact post (14.1.3 37
TeF special model (7.lam 227
perier DW prior DWBA (82.18) 259
rener BEDW brior DWBA (bare) (82200 260
i 1-step (8222) 260
Tokes CDCC (B.224) 260
Toi bin (8229) 261
TiWB“’* PWEBA (1415 374
TUEN) transition rate (5.4.1) 190
e transmmission coefficiant (L1139 313
o 2 At -gcaled potantial (335 an

U folded potential (5.2.1) 18l
e core-target potential (711 223
Lt valence-target potential (711 223
Uit optical potential (82.19y 239
Uod polarization potential (B2.19y 230
vV potential §3.1.1 49

17 point Coulomb (3.1.70y 60

Vo actual Conlomb 44100 142
A imaginary depth (3.1.107 72

Vin mean field (5.1.17 175
15 neutron depth 415 127
1o proton depth 4.1.5) 127
Lo real depth (3.1.108) 72

s spin-orbit depth 437 133
Vs spin-spin depth 4311y 137
14 Izpacalar part 415 127
14 Izovector part 415 127
Vo Interaction part in x (3.2.38) 83

?}i coupling coultipols A 435 135
Veia channel o coupling (32481 85

iz two-body §5.1 168
iz three-body 85.1 168
Varsy MY affactiva (52.13) 184
Voree polarization (11525) 328
Vielp trivial aquivalant (LL.5.3) 323
Virelp welghted equivalent (1153 323

VA o transfer kernel (4.5.14) 149



S mbe

covariance mmatrix

Imaginary potential part
Whittaker function

width fluctuation factor

branching ratio

vector spherical harmonic

moatrix of trial solutions

a Jacobi coordinate st

abundance ratio

proton mmber

photon wave function

channel indax in T basis
ufe
channel index in S basis
logarithmic derivative
nuclear stata label
fractional deformation
photon
1/4/1 — ¢
reduced width amplitnde
reduced width
Wigner limit
single particle
three-body channel index
partial wave phase shift
resonant
background
WEB
nuclear + Coulomb
R-matrix
deformation length
back shift
projectile-target scattering
radial wave function
adiabatic wave function
elkonal phase
3-body scattering waves
bins

(15.1.7)
(3.1.107)
(4.5.24)

(113.4)
(4.5.28)
(3.5.38)
(6.3.1)
Fig. 9.4
(122.7)
51.1.1
(3.5.31)

(3.2.1)
(2.3.31)
(3.2.2)
(6.5.1)
(113.17)
(4.4.9)
(1.2.1)
(2.3.30)
(6.5.14)
(6.5.15)
(10225
(10226
(0.2.23)
(3.1.38)
(3.1.91)
(3.1.91)
(7.4.12)
(8.2.28)
(102.10)
(4.4.9)
(114.1)

(3.1.9)
(7.1.13)
(7.2.6)
(0.4.20)
(9.3.4)

305

151
312
154
117
150
271
343

115
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excitation energy
exchange Index
epsilon algorithomn
channel elgenensrgy
Sommerfeld parameter
hypermomentum
transition multipels
decay constant
raduced mass
Z-projection states
statistical mean
2k
parity
azimuthal angle
p'th state of projectile
t'th state of targat

scalar e/m potential
micleon wave function
intrinsic deformed state
overlap function {A|B)
ellconal medulation
bin wawve functions
transformation angle
hard sphere phase shift
relative velocity dist.
ralativa wave function

pure Coulomb

coupled channels
scaled radius kR

turning point
hyperrading
density

matrix

charga

neutron

profils

internal

mattar

of lavals

Serbe o

52.1
53.4.2
(6.3.35)
(6.5.2)
(3.1.71)
(9.3.2)
(4.3.1)
(12.1.6)
(2.3.4)
(3.2.1)
(15.1.5)
(6.4.2)
52.1
52.4
53.2.1
53.2.1
(3.5.2)
(4.2.4)
(4.4.15)
(5.3.1)
(7.2.1)
(8.2.10)
(0.2.27)
(102.7)
(12.1.16
(2.3.20)
(3.1.72)
(3.2.8)
(3.1.21)
(3.1.67)
(9.2.11)

(3.2.25)
(3.5.1)

(5.1.25)
(5.1.33)
(5.1.25)
(5.1.25)
(114.1)

28
106
208
212
52
277
134
333
35
75
306
200
28
42
74
74
111
130
141
185
230
255
276
200
335
39
52
77
52
51
271

81

110
178
L7o
178
178
320
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Tape
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ap
Foap
phobo

S mbe

affective ranga
phase space
correlation matrix
vactors wert. center rass
Coulemb phage shift
spin cutoff parameter
cross section
absorption
integrated elastic
reaction
Rutherford
nuclear + Coulomb
in channal =pt
for polarized beam
total o + og
outcome X
breaknp
stripping
to all final states
DWBA
expearimental
theoretical
single particle
capture
 disintegration
Couleomb diszsociation
resonanca lifatimea
spherical tensor
1zospin operators
scattering angle from 2
fraction of ‘post’
hyperangle
Wigner ratio
unit concentration
internal coordinates
Glauber thickness
complex unit vectors
photon radial wih.
(B — B}/

(4.5.20)
(8.2.34)
(155.1)
55.1
(3.1.64)
(114.3)
(1.1.4)
(3.1.111)
(3.1.50)
(3.1.113)
(3.1.82)
(3.1.82)
(3.1.82)
(3.2.27)
(3.2.34)
(4.5.28)
(7.2.24)
(7.2.25)
(123.16)
(14.1.1)
(14.1.1)
(142.1)
(142.1)
(144.1)
(144.2)
(144.1)
52.1
(3.2.26)
(3.4.4)
52.4
(6.3.20)
(9.2.11)
(102.27)
(123.17)
53.2.1
(0.4.16)
(3.5.36)
(3.5.37)
(7.3.3)

154
237
237
348
371
371
384
384
387
387
387
28

81

104
42

271
205
350
74

283
118
117
238
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3% measure
shift leval matrix
width of burning peak
reronant term in prior
cross section uncertainty
resonance width

formmal

‘obzerved’

total formal
width level atrix
Coulomb phase
Slater determinant
system bound state

in Hartrae Fock

in shell model

Maxwell-Boltzmann dist.

gystem wave function
in partition =
over all partitions
with m-state labels
with g-exchange
adiabatic
special model
Faddeev components
ChiZC
adiabatic channal
total adlabatic

solid angla

source tarm

(6,%,%}

hard-sphers phase matrix

detector area

oparator

unit vector

Nors)

rotation matrix

Laguerre polynommial

Legendre polynommial

spherical harmonic

(15.1.1)
(103.24)
(12.1.22)
514.1.1
(15.1.1)
52.1
(102.15)
(10221}
(103.14)
(10.3.25)
Box 3.2
(5.1.7)
(3.5.18)
(5.1.18)
(5.1.11)
(12.1.8)
(2.3.18)
(3.2.1)

(3.2.5)
(3.2.7)
(3.4.10)
(7.1.5)
(7.1.17)
(8.1.1)
(8.2.6)
(0.4.8)
(9.4.9)
52.4
(3.3.2)
(9.2.15)
(103.5)
52.4.1
53
52.4.4
.31
(4.4.15)
(5.1.10)
(3.1.7)
(3.1.54)

305
301
330
371
305
28

201
262
209
301
5l

170
113
176
173
33
3B
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T
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223
227
248
254
281
281
42
aa
272
208
42
48
45
134
141
171
51
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Clebsch-Gordon coef.

W abcd; ef) Racah cosfficient
(L3 ]| % | Le)

reduced matrix element
AT I)

Triangnlar inequality
Jol &) cylindrical Bessal
S(E) anergy average over T
{ou) thermal average
£ X] statistical average

I'(z)

Gamma function

S mbe

(3.2.1)
(3.2.4)

(4.3.3)

(4.4.1)
(7.2.12)
(115.8)
(12.1.3)
(15.1.2)
(15.1.17)

]
TG

134

138
232
325
333
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Appendix B

Getting started with FRESCO

B.1 General stroctore

FRE3CO Iz a general-purpose reaction code, created and frequently updated by Ian
Thompson. The code calculates virtually any nuclear reaction which can be ex-
pressed in a coupled-channel form. There iz a public version of the code which
can be downloaded from the website wiww fresco.org uk. FREsCoO is accompa-
nied by SFRE3CO, a wrapper code that call: FREsco for data fitting, suMBING and
SUMXEN, two auxiliary codes for integrated cross sections. Although we do not
Include it here, in the same site vou can also find XFRESCO the front-end program
to FREsco for X-window displays.

Its original version was written in Fortran 77 but some important sections wers
ported to Fortran 900 An Important part concerns the input, which now uses
mamellst format, making it much easier to view the relevant variables. In this sec-
tion we will discuss the general namelist forrnat of the FRE3CO Input.

There are several different layers of ocutput produced by FREsco. The default
output comntains the mest important information concerning the caleulation, repeat-
ing the input information, and the resulting observables but most detailed infor-
mmation is contained in the generated fort files, inclnding files ready for plotting
purposes. At the end of this saction we present the list of output produced by
FRE3CO.

B.1.1 Inputfile
Input files contain five major namelists regarding different aspects of the caleula-
tion: fresco, partition, pot, overiap, coupling. The first iz for general parameters,
the second for defining the properties intrinsic to the projectile and the target, the
third for potentials, the fourth for the radial overlap functions and the last for the
couplings to be included. Keep in mind that In seme inputs, vou may not find all
these namelists. As FRE2CO can calculate rather intricate processes, input files can
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424 Gettirg starfed with FRESCO

sometimes look daunting. However, with the namelist format, you do net need to
define all variables but only those that are relevant for your example. Below we
Introduce the contents of each namelist and their purpose. Detailed Instructions are
given In the FRE2CO input manual on the website.

heading

EBvery Input file starts with a heading (80 characters) that should describe and iden-
tify the reaction to be caleulated, with perhaps some detall of the method and states
Included. The following line begins with NAMELIST to indicate the subsequent

style of input.
dfresco

This section Introduces the parameters nvelved in the mumerical caleulations. It
contains the radial information: the step with which the coupled-channel equa-
tlons are integrated (kem) and the radius at which the integrated wave function
gets matched to the asymptotic form (rmatck). Whenever non-local kernels are
Imvolved a few more parameters are needed, (vintp, Anl, el cenre), but these will
be discussed in subsection B.2.4.2

In thiz namelist you also find general options for the caleulations and the desired
observables. Cross sections are calculated from the angular range thmuin—hmax
{in degrees) in steps of thinc. This is also where you define the number of partial
waves In the caleculation, by providing the initial and final tetal angular mementum:
Jrmin, frmax®

absend controls the convergence. If in the interval maxi(0 fimin) = T = jimax the
absorption in the elastic channel 1s smaller than absepd mb for three consecntive
Jr sets, the caleulation stops. When absend< 0, it takes the full T -interval ®

There are many control variables which trace intermediate steps in the caleula-
tion (starting from zere, increasing values will give more In depth information).
Here we shall mention just a few of the most frequently used. For prnting the cou-
pled partial waves for each J7 (total angnlar momentium and parity) use chaws; for

1 It iz often veeful to inmoduce lower radial cotoffs in the caleulations, ezpecially for zcattering below the
Coulomb bamier. ®ith cwrr ifm) or cwd you iotroduce a lower mdial cotoff in the coupled-chamel equations.
Whereas oty is the same for all partal waves, ool allows you to define an L-dependent cutoff (L is the otal
angular momennmm of the zet). The code will vee maxieud L¥hon, o). If curr is pegabve, the lower cutoff
& put at that distance imdide the Coulomb mwrming point. Finally, cuse (fm) mmoves off-disgonal couplings
meide the given radiis.

To emable greater epeed and flexibility, you can define & number of angular momennm intervals fumefi)
=253 and the stepe with which you want to peform the calculsion fhordf), /=23, Mote that fumg =1 and
Povd! ! |=fimin, 5o that the first interval is caloulated fully. The omitted T values are provided by interpolation
om the zcattering amplindez Alm M : mM, L) prior to caleulsting croes zeciom. frefy iz a variable that
enables the calculation of poeitive parity (frets="F' ) or Degative parity ooly (frere="H" or ‘I9'), for each energy.
I frete= 0, ' ', or F, D0 meimichon is made.

Sometimes, for accurate elsstic-scattering croes sectioms it is only pecessary o include the elastc chanpel
This can be dope with the option jimik =0, Then, io the range f = abz(jmin), mosfas and arcited staes am
jgoored in the calculation.
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details of the coupling coefficlents lister, and for 8 matrices use smats (absorption
& reaction cross sections for successive partitions and excitations are cutput when
smats> 1, and elastic B-matrix elements are cuput when smats= 2).

The variable xstabl=0 prints the cross sections and tensor analvzing powsars up
to rank k=:xstabl for all excitation levels In all partitions in Fortran file 16 (usually
called fort 16).

Finally, and meost importantly, this 1s the place where the beam energy Iz spec-
Hied through eizb. If vou want a caleulation at several energles, you can use the
array elab(i] i=1.4 and »lab(i), i=1,3 to define the boundary points and the number
of interrnediate energy steps between elab(i] and elab{i+1).

By default, the code assumes the elastic channel, the channel with the incoming
plane wave, is the first excitation of the first partition. You can change this byusing
pel=1 for the partition number and exizf for the excitation within that partition.
Also, elab refers by default to the energy of the projectile lin=1, but you can easily
change the calculation to Inverse kinematics by setting lin=2.

&pariition

In partition you introduce all the mass partitions and the corresponding channels
to be considered in the reaction. In the simplest case, elastic scattering within
the optical medel, you introduce just one partition, including the details of the
projectile (paemep, massp, 7p) and the details of the target (mamet, masst, zt). The
g-value for the reaction is ghven with guwal (MeV) and the number of states that
you want to include in this partition iz »ex. Below defining each partition, you
have to introduce the mex assoclated palrs of states (at least one). This is done
through another namelist &staies.

states

Bach palr of states iz a specific cornbination of cne state of the projectile and one
state of the target. So this Is the place where you introduce the spin, parity and
excitation energy of these states: (o, poyp, ep) for projectile and (ft, prye, et) for tar-
get. The variables bawdp and bandt are synonyms for piyp and piyt respectively.
The optical potential for the distorted wave for p 4 £ relative motion is given by the
index cpet, also defined here. This namelist Is repeated as many times as necessary,
to introduce all the pairs of states you wish to Include in the caleulation. When re-
peating the &strtes namelist, if one of the bodies stays in the same state, vou should
net introduce spin, parity and excitation energy again, but just set copyp or copyt
to refer to the Sstates namelist in which the original state was first introduced.
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&pot

This namelist containg the parameters for the potentials to be used in the reac-
tion caleulation, either for bound single-particle states or optical potentials. The
narnelist iz repeated for each term in the potential To identify the potential, there
i1z an index kp, and all the compeonents with a given &g value are added together
to produce the potential used. So, when calculating the distorted waves, cpot will
rafer to one of the kp. The same will be usad when calculating the bound single-
particle states with kbpeot (in Severlap). Bach term in the potential is characterized
by atype and a shape, followed by parameters p(i), [=1,.. 5. Traditionally, we de-
fine the Coulomb term first (fype=0, shape=0 for a charged sphere). Then pf ! J=ap
and p{2)=ct correspond to mass mimber of the projectile and the target needed
for the conversion of the reduced radii inte physical radii & = r(ap¥® + at¥®).
The p(3)=7. is the reduced Coulomb radins. MNote that the same mass factor
(apX/® + at1/?) is used in all terms of a given potential. fype=1 corresponds to the
volurne nuclear interaction, with shape=0 for Woods-Saxon shape* The pararme-
ters for the real part are p{f )=V, p(2)=ro, p(3)=an (for depth in MeV, the reduced
rading in fmn and the diffuseness in fm), while the parameters for the Imaginary
part are p(4)=W5, pi5)=r;, p(6)=a;. A surface miclear interaction is Introduced
with type=2 and the spin-orbit with type=3, for the projectile, and type=4 for the
target.E'

When the potential does not have an analytic form, it is useful to read it In nu-
merically. This can be achieved setting shape=7 8,9 to read from file fort 4 the real
or the Imaginary part of the potential, or the full cormplex potential, respactively.

d&overiap

Crverlap functions are needed in single-particle excitation caleulations or in transfer
caleulations. The overlaps can refer to bound states and scattering states, but we
will leave the latter for subsection B.2.3. Bvery &overlap beging with an index kel
The overlap function introduced in Section 5.3 tells us how the composite nucleus
E looks relative to its core A The composite nuclens and the core are in partition
e and ic2 respectively, and refer to the projectile (=1) or target (iz=2). In the
simpler case kind=0, we ignore the spin of the core and take |({, s%)) coupling.®
The overlap has #x number of nodes (Including the origin, I relative angular me-
mentumn, s# for the spin of the additional fragment (typically a neutron or proton
s=1/2), and tetal angular momentum j. The potential uged in the calenlation of
the state 15 that indexed kbpot. You can also introduce the binding energy be if

4 a large mumber of standard shapes aw predefined, of which we mention shape=3 for the Gamsian form
exp[—(r — Ha )2/ (with pi2 |= and p{3)=F) a= the moet commen altanative.

 Tenzor interactons and projectle/target deformation can be inmoduced with fype=5—! {. We will reqmn 1o this
i subsecion B .22

& Multi-chammel epin couplings are alss available with fnd=3.
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you want the potential to be adjusted to reproduce the binding energy ({se=1 for
adjusting the depth of the central part). If no rescaling is needed, set se=0. A
spectroscopic amplitide for the overlap can be set to the value ./ram*ampl if
both of these are non-zero. Thiz amplinde can also be infroduced after &coupling
in the namelist Sofp.

For printing more detalled information into the standard output, there is a trace
variable ipe. Its default value iz zere, and, as it increases, it provides more detailed
information on the overlap function.”

&roupling

Couplings are caleulated with the information given in this namelist and include
general spin transfer (flad=1); electromagnetic couplings (kind=2), single parti-
cle excitations (kind=3, 4 for projectile and target respectively); transfer couplings
(kind=5, 6,7, & for zero-range, local energy approximation, finite-range and non-
orthogonality corrections respectively). The coupling iz from all states In partition
lgfrom to all states In partition irte. Couplings are included in the reverse direc-
tion unless icte < 0. For specific options of the coupling we use the parameters
pd, ip2, ip3 and for cholces of the potentials in the operator there are pf, g2 pa-
rameters. More detail on this namelist and others that follow will be given with
specific examplas.

B.1.2 Outpmi files

The mmain output file (fort.€ or stdout) contains first of all a representation of all the
parameters read from the Input file. It will provide a summary of the caleulation
of the overlap functions (including binding energy, depth of the adjusted poten-
tial, rms rading and asymptetic normalization coefficient) and the coupling matrix
elernents. For each beam energy, it provides some Information relative to the kine-
mmatie variables in the reaction followed by the contribution to the cross section of
each partial wave. Integrated cross sections and angular distributions are printed at
the end of the fila.

Also at the end of the standard output file, as a reminder to the user, is a list
of other files that were created during the mun with additional information. Hare
we mention a few: fort 16 containg all angnlar distributions in a graphic format
{to be read by XMOR or XM ORACE); fort.13 containg total cross sections for each
channel; fort 56 contains the total absorptive, reaction and non-elastic cross section
for each angular momenturn. Separate cross sections are included in files 201, 202,

" Radial wave functioms of bound states can be obtained by zetting fpe odd, intermediate ikembom with ipei=3,
and the final itembon with jpes=0.
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Table B.1. File allocation for the inputs and owtputs for FRESCO.

Fil= Routines Uze

2 SFREZCO zearch specification fils

3 FREADE FR temporary namelizt file

4 INTER input external KTND=1,2 form factors
POTENT input extemal potentials

5 standard input

] standard output

7 DIZFX S-matrix elements

13 FR total cross sections for each Elab

lé CRIZE tables of cross sections

17 FR output scattering waes

MN-23 For uzers =g bound states, amplitudes)

24 POTENT output potentialz

35 FR astrophysical 5-factors for EL o

L CRIZE scattering Legendre cocfficients

EX CRIZE mattering amplitudes

L DIZFX cross sections for each Jo

39 FR 2 croz: zection: for cach &4

40 FR all eross zection: for cach &y

41 S0OURCE zource terms at sach iteration

42 S0OURCE bin wawe functions for each &

43 INFORM bin phass zhiftz az &k functions

44 INFORM bin phaze zhifts az B functions

45 ERWIMN scattering phase shift az B functions

4 INFORM AMNCratios & bound wawe functions

47 reduced matrix elements

48 FR mizc log fil=

55 INFORM Zingle-particle wave functions

56 FR J fusion, reaction and nonclastic

57 FR output CDCC amplitudes

58 INFORM bound state wave functions

59 INFORM bound state wertex functions

60-62 EMATRIX trace of R-matrix calculations

66 INTER KIND=1 nonlocal formfacter

71 FR phasze shifts az £y, functions

75 FR astrophysical 3-factors for Elab

B9 MULTTP all coupling potentials

105 FCM ¥ progress during fiting

106 FCM parameter :napshots during fitting

200 CRIZE clastic crosz zection if not fort 201

201-210  CRIEE cross sections (ef 16) of up to 10 states

301 CDCIN new Frezco input

203 SFREZCO input zearch file

204 SFREZCO output plot fil=

305 CDCIN new input from CDCC, col format

206 SFREECOFRXXD  input Freszco fils

307 SFRESCO/FEXXD  initial Output Fresco file

208 SFRESCO/FRXXD  main Output Frezco file




E2 Learming through examples 429

p+MiTa Coulomb and Muclaar;
MAMELIST
AFRESCO hem=0.1 rmatch=80
ftmin=0.0 jtmax=50 absand= 0.0010
thmin =0.00 thmax=140.00 thinc=1.00
chans=1amats=2 xstabl=1
elabi1:3)=6.9 11.00 49.3580 nlabi1:3)=11/

APARTITION namap='p' massp=1.00 zp=1

namat="Mi7&"' masst=75.0000 zt=2% qual=0.000 nax=1 §
ASTATES jp=0.5 bandp=1 ep=0.0000 cpot=1 =00 bandt=1 <t=0.0000 /
Apartition !

APOT kp=1 ap=1.000 at=7& 000 rc=1.2 |

APOT kp=1 type=1 p1=d0.00 p2=1.2 p3=085 p4=10.0 p5=1.2 p&=0.500 [
Apot

Aowarlap §

Aroupling

Box B.l: FrEzcO input for the alastic scattering of protons on ™Ni at several
beam energias

atc., in the order they were specified. A full list of file allocations iz given in Table
Bl

B2 Learning throngh examples
B.2.1 Elasfic seattering

As an elastic scattering example, we chose the proton scattering on ™Ni within the
optical model. This exotic nuclens Iz an important walting peint in the r-process
(Chapter 1). The Input for our example 1s shown Box B.l. The calculations are
performed up to a radins of rmutch=>50 fm and partial waves up to fimee=50 are
inclnded. Thres beam energies are caleulated. For this case, only one partition is
neaded with the appropriate ground states specificied (the proton is spin 1/2 and
positive parity, and the "°MNi, being an even-even nucleus, has J7 = 0%). The
only remaining ingredient is the potential between the proton and "°Ni (indexed
cpot=kp=1) which contains a Coulemb part and a nuclear real and Imaginary part.
The results can be found in the standard output file, but it is easier to plot the fort. 16
file to obtain Fig. B.1.

B.2.2 Inelastic scattering

Inelastic scattering exciting collective states can be llustrated with the example
B0, ) 12C{2F ), where the carbon nuclens gets excited into its first excited state.
This reaction can provide complementary information to one of the most important
reactions in astrophysics (subsection 1.3.2), the e-capture reaction on **C. In this
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10—
| —— E=69 MeVY

—-— E=11 MeV

——- 4335 MeV

Ratio to Rutherford

U " " 1 " " 1 " " 1 " "
0 45 20 135 150

Scattering angle ([degrees)

Fig B.1. Elastic scattering of protons om " Mi at several beam energies, caleulated with
mputfrom Box B.1.

type of inelastic reaction, only one partition is needed, but it contains two states.
The projectile state Is not changed (cepyp=1) but the appropriate spin, parity and
excitation energy need to be introduced for the target. The input iz shown in Box
B2

In order for the reaction to happen, the potential needs to contain a tensor ¥
patt to enable the target transition 0% — 2+ This is done assuming a rotor modal
for the target and, in the input, only a deformation length needs to be introduced.
For deforming a projectile type=10, while for deforming a target, type=11. Here
the deformmation length 4z iz p(2)=1.3 fm, as twice highlighted in Box B.2. The
optical potential introduced includes a Coulomb term, the nuclear real term, and a
muclear imaginary with a volume (fype=1) and a surface part (fype=2). Bach part
nezeds to be deformed, and enly the two nuclear parts are deformed. I Coulomb
deformation were needed, an additional line after the Coulomb potential would
have to be introduced with the same format, except that, instead of the deformation
length, the reduced matrix element of Eq. (4.4.25) should be given® As the proton

2 H you do not want bo assume a rotational model, you can introduce these couplings feither deformation length
or matrix element) for each initial-to-finel state thmugh ryee=1%, 13 for pmjectle and target respectively. In
thiz cass, give a draiep namelist specifying i fa, &, str fora coupling fmm state & o state fo, mltpoladn: &
and strength srr (arr i the reduced matrix element for Coulomb rameiioms aod the mdoced defomation length
for nuclear mEnsitons).
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alpha+cl? -= alpha+cl2® @ 100 Mev; nuc def

HAMELIST

&FRESCO han=0.050 miatch=20.000 rintp=0.20
Jjomin=0.0 jtmax=40 absend= 0.01
thmin=0.00 thmax=180.00 thinc=1.00
iter=1 ips=0.0 1block=0
chans=1 smats=2 xstabhl-1
elabily=100.0

APARTITION namep-'a'lpha' massp=4.0000 zp=2

namet="12¢" masst=12.000 zt=6 gqval=0.000 nex=2 [
S5TATES jp=0. bandp=1 ep=0.0000 cpot=1 jt=0.0 bandt=1 et=0.0000 /
A5TATES copyp=1 cpot=1 Jt=2.0 bandt=1 et=4.4230 /
&partition /

&FPOT kp=1 ap=4.000 at=12.000 re=1.2

&POT kp=1 typeel..pledf.0.p2=1,2 p3=0.65 p4=10.0 ps-1.2 pE-0.500 /
&roT kp=-}rtype-11 pl-0.0 p2-1.5"
&POT kpm 1" EypemifidmO Ol
&FOT kp-% Eype-11 pl-0.0 p2-1.3"%
e A
doverlap /

&coupling /

""p3-ﬂ 65 p4=£.0 pS=1.2 p&=0.500 /

Box B.2: FRE3CO Input for the inelastic excitation of 13C by o particles at 100
Me¥

and neutrons do neot necessarily have the same spatial distribution, the deformation
paramsters will, in general, not be the same.

The example shows a DWEA calenlation as ier=1. You could check the validity
of the DWBA by including higher-order terms in vour Born expansion (increasing
fter) or performing a full coupled-channels caleulation (frer=0, iblock=2). Remlts
for the inelastic excitation of 1¥C are shown in Fig. B.2

B.2.3 Brealmp

Erealmp calculations can be meodeled as single-particle excitation Into the contin-
uurmn. In this example we show a typlcal CDCC caleulation as described in Section
8.2 It calculates the breakup of ®B into p + "Be, under the field of # Pb at in-
termediate energies. The input is shown in Box B.3. The breakup of B has been
measured many times with the aim of extracting the proton capture rate on "Be.
Several new ingredients need to be explained. First of all, due to the long range
of the Coulorb interaction it iz very important to include the effect of couplings
out to large distances. Instead of integrating the CDCC equations up to very large
radii, we introduce rasym. Satting rmatch= ( tells the coda that tha Intagration of
the aquations should be done up to rmatch, numerically, but thess should then be
mmatched with coupled-channel Coulomb functions up to resym. Also important
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T T T T T T T T T

10° —— E=100 MeYf

Cross section (mbtsr)
o

(=]
(=]

10 " 1 " 1 " 1 " 1 " 1 "
0 10 20 30 40 a0 G0

scattering angle (degrees)

Fig. B.2. Inclastic angular distribution for the excitation of 1*C by o particles at 100 MeV
obtained with the input of Box B.2.
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Felativa orter gy (W) M Scattering angle [degrees)

Fig B.3. Breakup of B on ®%Pb at 82 MeViu. Left: p— "Be relative energy distribution.
Right: center-of-mass angular distribution. Both are obtained with the input of Box B 3.

are the partial waves. For these Intermediate anergies, many partial waves need to
be included and it s useful, instead of caleulating each single one, to interpolate
between them. This can be done with fump and jhewrd. In this example, we start
with fimin=0 until § = 200 in steps of 1, for £ = 200—300 use steps of 10, for
Jt = 300—1000use steps of 50, and for j& = 1000— 3000 use steps of 200. With
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COOC EE+20EPD ; nuckarand couke mb s-wate breakup
MOELET
GFrasce home 0,07 rmatche -S0000 rinip= 0.15 rsp= 00 rasym= 100000 accr e 0,007

hmin= 00 hmaws SO00.0a K52 Ad= 500000

ump = 1 10 30 200

Jbord= 00 2000 3000 TOO00 SO0 0

Thmin= 000 Thmak= 2000 1hinc= 0.05 uir=- 20,00

Ipsm O 0000 RO O f2re O Jbkc k= 21 Anu= 24 smalkan= 100E-12 smalkoup=100E12

2ib= S350000 peim] 2%k] Bb=1lin=1 E¥=1 chanT= 1 smats= 2 W@ bk 1cdcc= 1/
SRNhien namep='ZE massp= &.Zp= 5nev= 21 paf=T namei= 208 P maws1=208. o= E2 Qb= 0.1370)
E51a1s [p= 1.5 prype=-l2p= 00000 Cooim 1 =00 pTed= 1 at= 00000/
B51a%% |p= 0.5 pTyp= 1 2p= 0.1583 cpoi= 1 copym 1/
B51a%% p= 0.5 pTyp= 1 2p= 0O.2180 cpoi= 1 copym 1/
B51a%% |p= 0.5 pTyp= 1 2p= 0.22350 cpoi= 1 copym 1/
B51a%% |p= 0.5 pTyp= 1 2p= 04530 cpoi= 1 copym 1/
BE1a%% |p= 0.5 pTyp= 1 2p= OLGEED cpoi= 1 Copym 1/
B518%% p= 0.5 pTyp= 1 2p= 0LS43E cpoi= 1 copym 1/
B51a%% |p= 0.5 pTyp= 1 2p= 1.247E cpoi= 1 copym 1/
B51a%% |p= 0.5 pTyp= 1 2p= 15007 cpoi= 1 copym 1/
BE1a%% |p= 0.5 pTyp= 1 2p= 20027 cpoi= 1 copym 1/
B51a%% p= 0.5 pTyp= 1 2p= 24536 cpoi= 1 copym 1/
B51a%% p= 0.5 pTyp= 1 2p= 29536 cpoi= 1 copym 1/
B51a%% |p= 0.5 pTyp= 1 2p= 2.5025 cpoi= 1 copym 1/
B51a%% |p= 0.5 pTyp= 1 2p= 4. 1005 cpoi= 1 copym 1/
B51a%% [p= 0.5 pTyp= 1 2p= 4. 7474 cpoi= 1 copm 1/
B51a%% p= 0.5 pTyp= 1 2p= 54434 cpoi= 1 copm 1/
B51a%% |p= 0.5 pTyp= 1 2p= 51284 cpoi= 1 copym 1/
B51a%% |p= 0.5 pTyp= 1 2p= 59524 cpoi= 1 copym 1/
B51a%% p= 0.5 pTyp= 1 2p= 7.E253 cpoi= 1 copym 1/
B51a%% |p= 0.5 pTyp= 1 2p= E.7173 cpoi= 1 copym 1/
B518%% p= 0.5 pTyp= 1 2p= 95583 cpoi= 1 copym 1/
ESRNNGN Mamep= 7B’ Massp= 7.Zp= 4 New= -1 MrkT amai= 20SP0 Masi=205 0000 ZmE2 gk 0./
EE1aes [p= 00 ptyp= 1 2p= 00000 Cpoim Z =00 myl= 1 2t 00000
ERnhkn

B kp= 1 1ye= 0 Shape= 0 g1 3=
B k= 2 1= 0 Shape= O g1 3=
B k= 2 1= 1 Shape= 0 p1i5=
B k= 2 1y0e= 0 Shape= 0 g1 3=
B kp= 2 14e= 1 Shape= 0 p1:iE=
B k= 4 1y0e= 0 Shape= O g1 3=
B k=4 1y0e= 1 Shape= 0 g1 3=
B k=4 1y0e= 3 Shape= 0 g1 3=

10000 00000 25500
20E0000 00000 1. 3000 7
1142000 1.2860 08530 SA4400 1.7350 08050
20E0000 00000 1. 3000 7

2457120 11700 07500 153400 1.2200 08010
10000 00000 23970

445750 Z2.2970 0A4B00 )

4 B9800 Z2.2910 0480 )

13

Goreriap knl= 1 Klm] k2= Z = 1 Kinde=O A= 1 k=1 50=0.5]=1.50am=1 ampk 100 khpoi=4 be= 0. 1270 |%0= 1 |pc=0 /

Goveriap knl= 2 Klm] k2= Z IN= 1 KiNdeD b0 s A0S = 0.5 mamM=1 ampk= 100 KDpoi= 4 Dm0 07152 Ecm] 2 Ipoe 2 k= 2002 r=-000 244 4
Soveriap knl= 3 Klm] k2= Z IN= T KindeD b0 s A0S p= 0.5 mAmM=1 ampk= 100 KDpoi= 4 D= -0 07 71 =] 2 Ipo= 2 k= 202 6=-00824
Goveriap knl= 4 Klm] k2= Z IN= 1 KindeD b0 S A0S = 0.5 maAmM=1 ampk= 100 KDpoi= 4 b= -0 1850 ko=l 2 Ipo= 2 k= Z026=-0.1324 /
SOrveriap knl= 5 Klm] k2= Z IN= T KindeD b0 s A5 = 0.5 mamM=1 ampk= 100 KDpoi= 4 D024 13 k=] 2 Ipo= 2 k= Z02r=-0.1514 /
Goveriap knl= 5 Klm] k2= 2 INm T KiNde b0 s A0S = 0.5 mAM=1 ampk= 100 KDpoi= 4 Bt 0.5 23 cm] 2 Ipom 2 nk= 2002 6= =002 2304
Goveriap knl= 7 Klm] k2= Z INm T KiNde b0 s A0S = 0.5 mAM=1 ampk= 100 KDpoi= 4 Bt -0 5020 cm] 2 Ipom 2 nk= 2002 r= =002 7509 4
Soveriap knl= B Klm] k2= Z IN= 1 KiNdeD b0 s A5 p= 0.5 faAM=1 ampk= 100 KDpoi= 4 B -1 1057 =] 2 Ipom 2 k= 2002 r=-0.3 254
Goveriap knl= 9 Klm] k2= Z IN= T KindeD b0 s fe0.5 p= 0.5 faAM=1 ampk= 100 KDpoi= 4 D= -1 4555 ECm] 2 Ipo= 2 k= Z0ar=-0.3774
Soveriap knl= 10 kK1=1 k2= In= 1 Kind=d (=0 Sp=0, 5 = 0.5 ram=1 ampk 100 kbpoi=4 b= -1 85165 [5=12 |pi=Z nk= 202 1= 04 254
Soveriap knl= 11 K1=1 kZ=Z In= 1 Kind=d (=0 Sp=0, 5 = 0.5 ram=1 ampk 100 kbpoi=4 b= -2 3125 [%C=12 |pi=Z nk= 202 1= 04 754
Goveriap knl= 12 K1=1 k2= In= 1 Kind=d (=0 Sp=0, 5 = 0.5 am=1 ampk 1,00 kbpoi=4 b= -2 B125 [%C=12 |pi=Z Ak= 2021= 0524 5/
Soveriap knl= 12 K1=1 kKZ=Z In= 1 Kind=d (=0 Sp=0, 5 = 0.5 ram=1 ampk 100 kbpoi=4 b= -3.23574 [50=12 |pi=Z nk= 202r= 05735/
Soveriap knl= 14 K1=1 k2= In= 1 Kind=d (=0 Sp=0, 5 = 0.5 ram=1 ampk 1,00 kbpoi=4 b= -3 9554 |5=]2 |po=Z nk= 202r= 05225/
Gveriap knl= 15 kK1=1 k2= In= 1 Kind=d (=0 Sp=0, 5 = 0.5 ram=1 ampk 1,00 kbpoi=4 b= -4 5054 [5=]2 |po=? nk= 2020= 05715/
Gorveriap knl= 15 K1=1 k2= In= 1 Kind=d (=0 Sp=0, 5 = 0.5 am=1 ampk 100 kbpoi=4 b= -5.2023 [%C=12 |po=Z nk= 202r= 07205/
Soveriap knl= 17 K1=1 kEZ=Z In= 1 Kind=d (=0 Sp=0, 5 = 0.5 ram=1 ampk 1,00 kbpoi=4 b= 50073 [50=]2 |po=? nk= 2021= 07835/
Soveriap knl= 18 K1=1 k2= In= 1 Kind=d (=0 Sp=0, 5 = 0.5 ram=1 ampk 1,00 kbpoi=4 b= -5 2473 [5c=12 |pi=Z nk= 202r= 08185/
Soveriap knl= 13 K1=1 k2= In= 1 Kind=d (=0 Sp=0, 5 = 0.5 ram=1 ampk 1,00 kbpoi=4 b= -7 584 3 |5c=]2 |pc=Z nk= 202 1= 08575/
Gorveriap knl= 20 K1=1 kKZ=Z In= 1 Kind=d (=0 Sp=0, 5 = 0.5 am=1 ampk 1,00 kbpoi=4 b= -5.5353 [5=12 |pi=Z nk= 2021= 09755/
Soveriap knl= 21 kK1=1 k2= In= 1 Kind=d (=0 Sp=0, 5 = 0.5 am=1 ampk 1,00 kbpoi=4 b= 557173 [50=12 |po=Z nk= 202 1= 09555/
Soveriap S|

BCoupling k1= 1 kfrom= 2 kind=2 Ip1= Z Ip2=0 [p3=0 pl=
SCoupling

0000 pl= 20000 ¢

Box B.% FRE3CO input forthe breaknp of ®B on ®“®Pb at 82 MeV/u

the inclusion of so many partial waves, the strong repulsion at short distances can
Introduce nurnerical problems. This 1s avelded with a radial cuteff eutr = —20
fm, where the minus sign puts the cutoff 20 fm inside the Coulomb turning peint.
This example contalns enly s-waves In the continuum, sliced into 20 energy
bins. Other partial waves (p,d, f are needed for convergence) are left out of this
exarnple to make It less time consuming (beware, It will still take a few minutes In
a desktop computer!). Since In general there will be many channels involved, it Is
comvanient to drop off channelsicouplings whenever they are weak. Thiz iz done
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SE+Z058Fb ; N+Z breakup with g=0,1,2
CDoC
FCDoC
hem=0.01 rmatch=80 rasym=1000 accrcy=0001 absand=-50
&lab=5hG
jpard= 0O 200300 1000 2000
jump= 1 10 50 200
thmax=20 thinc=005 c utr=-20 =mat==2 »=tabl=1
ncoul=0 reor=0gq=2
!
EMUZLEUS part='Proj name="S8E chargs=5 mass=8&
=pin=1.5 parity=-1 be =0.137 n=11=1j=1.5/
EZMUZLEUS part="Cors’ namse='7Bs' charge=4 mass=7 |
EZMUZLEUS parn="Valknca' nama="proton’ charge=1 mas=s=1 spin=0.5f
EMUZLEUS par="Target nams="208FL' change =82 mass=20& spin=0/

ZEBIN =pin=0.5 parity=+1 start=0.001 st p=0.60 and=10. anargy=F =0 j=0.5/
ZBIM [

EPOTENTIAL part=Frof a1=1 c=265f

EZPOTENTIAL part=Core’  a1=208 rc=1.3v=114 2 wi0=1.285 3=0.8563 w=0 44 wrl=1.730 aw=0.509 §
EZPOTENTIAL part=Valence' a1=208 rc=1.3 v=34 519 wr0=1.17 a=0.75 w=15.340 wid=1.32 aw=0.601f
EPOTENTIAL part='G=' a1=1 rc=2.3971 w=44 675 wi=2.391 3= 48 vso=4 805 rso00=2.391 aso=0.48f

Box B.4: FrREzCO input for the breakup of *B on “®*Pb at 82 MeV per nucleon
ishort version)

through smallchan and smalicoup. To perform a full CDCC caleulation, fter=0 and
iblock=21.

The continuum of *B is binned into discrete excited states of positive energy,
so under the first partition the namelist states needs to be repeated for each bin,
with appropriate excitation energy and quantum numbers. Since in this example
we are not interested in the second partition, it does net get printed with the op-
tion of negative xex. Several new variables are needad when defining the bins (as
in subsection B.2.1): negative be provides bins with energy relative to threshold
|be|, with a width er, and an amplitude \/mam*ampl. To characterize the weight
function of the bin we use isc (ise=2 for non-resonant bins, and ise=4 for resonant
bins). Notae that here, the same potential is used for the *B bound and continuum
states. This need not be the case.

After defining the overlaps, coupling pararneters are introduced: kind=3 stands
for single-particle excitations of the projectile (kind=4 would be for the target), inf
is the maximum moultipele order in the expansion of the couplings (Eq. (8.2.13))
Included, p2=0,1,2 for Coulomb and muclear, nuclear only and Coulemb only,
tespectively, and [p3 makes specific selections of couplings with default ip3=0
whan all couplings are included.® For the interactions in the coupling matrix, the
core-target 1s potential index g =3 and the valence-target is potential index p2=2.

© I ip3=l, ther are no recrientation couplings for all but the monopole, if ip3=2, ooly modentation couplings
are included, and if 4p3=3 it includes ooly cowplings to aod from the gmund state. Idore op Hone exist but are
Dot presented here,
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Angular distributions of the cross sections for each energy bin can be found
in fort. 16, To obtain a total angular distribution one needs to sum over all bins
fuse sumbins < fort 16 = e xsum). Forthe breaknp example shown here, the
resulting total angular distribution iz plotted In Fig. B 3(left). If wou are interestad
in the energy distribution, fort.13 contains all angular integrated cross sections for
each bin. In general, for each energy, 3 sum over all £ partial waves within the
projectile iz necessary (use sumxen < fort.13 = xed.xen). In Fig. B.3(right) we
show the energy distribution for the ®B breakup here considered. In addition, it is
useful to look at fort.S6 (cross ssction per partial wave L) to ensure that enough
partial waves are included In the calculation.

Defining a leng list of bin states and overlaps can be easily automated. The
tevized cDcc style of input has been developed specifically for large CDCC cal-
culations, and transforms a sipler Input inte the standard input we have just gone
through. The simplar Input would then look like Box B.4.

B.2.4 Transfer

Transfer reactions are often used to extract structure informmation to input in astro-
physical simulations. Here we consider the XN{17F,1¥Na}12C transfer reaction at
10 MeV per nucleon. This reaction was measured with the alm of extracting the
asymptotic normalization coefficient of specific states in MNe which in turn pro-
vides a significant part of the rate for 1"F(p,y). The proton capture reaction on
Y appears in the rp-process in novas environments (subsection 1.5.2). The ratio
of the proton capture rate and the decay rate of '"F is also very important for the
understanding of galactic 7Q, 10 and 5N. The input for the transfer example is
givan in Box B.5.

A few Important new parameters need to be defined when performing the trans-
fer calenlation. Because the process lnvelves a non-local kermel VE(R', R) of
Eq. (4.5.77), In addition to the radial grids already understood, we need to ntreduce
v, Bnl ol centve. The vingp Is the step In K, Al ral are the non-local step
and the non-local range in R’ — R, respectively, and centered at cemre. Gaus-
slan quadrature iz used for the angular integrations in constructing the nen-lecal
kernels, and #aue 1s the mimber of the Gansslan Integration peints to be included.

In this exarmple the core has non-zero spin, and in order to generate the appro-
priate overlap of the composite nucleus 4N, it is necessary to take into account,
net only the angular momentum of the neutron but also the spin of *C. This can
be done with kiad=3 in the overlap definition where the spin of the core iz and of
the compeosite ib need to be specified. The coupling scheme is |({n, 5a)7, La; I5).

The only other new part of the input concerns the transfer coupling itself, as
all other parts (partitions, potential: and overlaps) have already been previously
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nldCf17 , nel8icls @ 170 mMey;
MAAELIZT )
GFRESCO heme0 .03 rmatch=40 rintp=0.20 hnl=0.1 rnl=5.00 centre=
JEm Nl 0 ftmae L0 m o Foheeeeenesnnannasssenesssne s
thmin=0.00 thmag=40.00 thinc=l.00
iter=1 nnu=36
chans=1 xstabl=l
elab=170.0

GPARTITION namep=‘fl7' massp=17. zp=9 namet='nld'’ masst=ld. zt=7 nex=1
EETETES jp=2.5 bandp=l ep=0.0 cpot=l jt=1.0 bandt=1l et=0.0000 /

EPARTITION namep=‘nel8' massp=18. zp=10 namet='cl3i’' masst=13. zt=0 qual=3.6286 nex=1 /
GETETES jp=0. bandp=1 ep=0.0 cpot=Z2 jt=0.5 bandt=-1 et=0.0000 /
Spartition f

ZPOT kp=l ap=17 000 st=14.000 rec=l.3 [

ZPOT kp=l type=1 pl=37.2 pl=l.2 p3=0.6 p4=21.6 pS=1.2 ph=0.63 [
EPOT kp=2 ap-lS IZII?III at=13.000 re=1.3 f

EPOT kp=2 e=1 pl=37.2 p2=1.2 p3=0.f pd=2l.6 p5=1.2 ph=0.63 /
EPoT k;-; E-Pl? rg-l.Z _.-'P F P F F

SPOT kp=3 type=1 pl=50.00 p2=1.2 p3=0.65 /

SPOT kp=3 type=3 pl=f.00 p2=1.2 p3=0.65 /

ZPOT kp=d at=13 re=1.2 [

ZPOT kp=d type=1 pl=50.00 p2=1.2 p3=0.65 /

ZPOT kp=d type=3 pl=f.00 p2=1.2 p3=0.65

GPOT kp=5 ap=17. IZII?III at=13.000 rn-E.E i

ZPOT kp=5 type=1 pl=37.2 pl=l.2 p3=0.6 p4=21.6 pS=1.2 ph=0.63 [

Spot [

Scverlap knl=1 icl=l ic2=2 in=1 kindm
Eruerlap knl=2 icl=2 icl=l in=2
&owerlap f

0 nn=l T=2 sn=0.5 j=2.5 kbpot=3 be=3.922 iscel jpc=0 /
nn=1 1=l =n=0.5 ja=m]l jb=l j=1.0 kbpot=d be=7 5506 isc=l ipc=l f

&:rp,e

Box B.5: FRE3CO input for the transfar reaction M¥N{1TE¥Ne)13C at 10 MeViu.

presanted. Transfer couplings are defined in the namelist &coupling by kind=5,67
for zero-range, low energy approximation and finite range, respectively. For finite-
range transfers, ipf=0,1 stands for post or prior, p2=0,1, —1 for no remnant, full
real rernant and full complex remnant respectively and {p3 denotes the index of
the core-core optical potential If jp3=0 then it uses the optical potential for the
first pair of excited states in the partition of the projectile core.

Following the &coupling nammelist, we need to define the amplimdes (coeffi-
clents of fractional parentage) of all the overlaps to be Inclnded in the calenlation.
Here, thiz iz done with &cfp where =12 for projectile or target, ib/ix corresponds
to the state index of the composite/core and f s the index of the corresponding
overlap function. Sothe first &ofp refers to the (TF|1¥Ne) overlap and the second
&rfp refars to the (¥ C|MN) overlap.

The angular distribution obtained from our example Is presented In Fig. B 4.

B.25 Capture

Caphire reactions are of direct interest in astrophysics as repeatedly pointed out in
Chapter 1. Although the electromagnetic operator Iz well understood, coupling ef-
fects may be non-trivial and require focused work. Here we pick a neutron capture
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Lo
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Cross section (miysr)
o

U 1 1 1
0 5 10 15 20

Scattering angle ([degrees)

Fig B.4 Transfer cross section for 2MNTEP NP0 at 10 MeViu calculated with the
mmput of Box B.5.

14Cin .gj15C- E1 anly

MAREL 5

&FRESCD hare= 0.100 rraich=100
jimin=0 jimas=d.5 abz=nd=1
Himir=0 fiman=0 it=r=1
alabd 1= 0005 4 005 nlab=50)

ZPARTITION rurnep-'neul'on' mazsp=1 0057 zp=0 nea=1 namel=145 mews =14 0022 =6

ZPARTITION na ={Gamma’ frassp= zp=0 naa=1 namel="15C' masst 150106 =6 qeak=1 213/
ZSTATES p-1 =1 =p= 0 gpot=d 0.5 phyt=1 =f=0)
Sparilion o e

&P kpe1 fypem 0 shape= 0 p(1 3 140000 00000 13000 )
&P kp=1 fype= 1 shape= 0 p(1 3 SFO000 17 0.7000)
&P kg1 fype= 3 shape= 0 (13 00000 17 0500
&P kpe2 fypem 0 shape= 0 (13 140000 00000 12000 )
&P kpm2 Eg._— 1 shape= &1 gg: EEFF00 12230 0500
a.nm kp- = 3 shapz=10 0000 12230 05000 )

SOWERLAP knl=1icl=1 ic2=2 ir=-2 kind=0nn=2 |=0 sn=0_.5j=0.5 kbpot=2 be=1213izc=1 !

Box B.6: FRE3CO input for neutron capture by 14C.

reaction that is completely dominated by £1: *C(n,y)!°C. This reaction was first
Introduced in Chapter | in the context of the r-process. In our example, the capture
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8 T T T

Cross section (1h)
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I
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Meutren energy (Me'Y, |ab)

Fig B.5. Meutron capture cross section for 'C az a function of neutron energy and caleu-
lated with the input of Box B 6.

Iscalenlated at 50 different scattering energies, from 5 ke'V up to 4 MeV. The Input
iz presented In Box B.6

For capture reactions, the first partition Iz defined In the usnalway, but in the sec-
ond partition, the projectile should be Gamme (with spin jp=1 and positive parity)
and cpot should refer toa non-existing potential in order that there be no photon po-
tential. The 239,; 18C gverlap is defined in &sverlap. Electromagnatic one-photon
couplings are defined through Akimd=2. Thereln, ipf refers to the multipelarity of
the transition and ip2=0,1,2 for including both alectric and magnetic transitions,
electric only and magnetic only, respectively. I ipd = 0, all muoltipelarities up to
ipd are included, otherwise only |izd| Iz caleulated.

There are several outputs available specifically for astrophysics. In Fig. B.5 we
plot the cross section for the ¥C(n )18 C capture reaction as a function of center-
of-mmazs energy (found in fort.39). For charged-particle reactions, astrophysical
S-factors are also available (see Table B.1).

B.3 Runtime errors

In a complicated medeling computer program like FRESCO, accurate results can-
not be obtained if there are obvious numerical errors either in the input, or pro-
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duced during the calculation. Problems may occur at energles very uch below
the Conlomb barrier, or at relativistic anergies, since FRE3CO shonld neot be usad
in thess cases. The program Is written to stop when large mimerical inaccuracies
occur, but no results can be tmsted until they are examined to see that they are
not sansitive to further Increases to the maximum rading et ch, maximum partial
waves fimuex, maximum non-local range v, and frther decreases inthe radial step
size kem and lower radial cutoff parameter cutl. We give some guidance on these
paramsters below.

When the program reads the input file, typing errors in variables or their values
will cause the program to stop after printing cut the complete namelist so vou can
see which variables have been successfully read in. Alternatively, if the words
MAMELIST and cDcc in the sacond line of the input are written in lower case
(‘namelist’ or ‘cdec’), the compiler’s own error handling will be used instead. You
can also look at the Input ache in fort.3, to see up to which line the input has been

read successtully.
During the running of FRE3CO, a number of induced or cancellation arrors can
be datected. These are:

Step size too large: I & iz the azymptotic wave number for a channel, then its product
with the step size should be sufficiently small for the Numerewv integration methed
to avoid large arrors: bahorm < 0.2,

Bound-state search fallure: Bound states are found in subroutine eigec by a Mewton-
Raphzon method with at most 40 iterations. Such states can be found at a specific
energy by varying some part of the potential: this part cannot be zero.

Insufficient pon-local width: I the non-local coupling form factors are too large when
| R — R'| = mi, then rri should be increased as recommended.

Letransfer acouracy boss:  In the transfer Legendre expanzionEq. (4.5.12), 1 £ + £7 iz too
large, there can be cancellati on emrors between different multipoles T Thizcan be
remedied by increazing the input parameter mimin to vz the slower m-dependent
method of [1].

Matching deficiency: The program will print an error meszage if the nuclear potentials
are not smaller than 0.02 MeW at the outer matching radivz, and stop if they are
larger than 0.1 MeW Increase rrafch, or cormect zome potential that does net
decay sufficiently fast.

Tteration failure in solving conpled equations: If in some partial wave zet, more than
ifer iterations still do not appear to comverge, then all cross zections will be af-
fected. Either use Padé acceleration (zee page 207), increass ifer or make it neg-
atiwe zo that the *best’ mbermediate value is vsed, or increaze ips =lightly. The
detailed progress of the iterations can be zeen by setting smats = 5.

Arcuracy loss in solving conpled equations: H any of the channels are propagating in
a clazzically forbidden region, there will be loss of linear independence of the
scparate solutions {Y,pg ()} of Eq. (6.3.2), a= all solutions will tend to become
exponentially increazing. Thiz iz monitered in the subroutine enyin durng the
surnmation Eq. (6.3.3), and will lead to a halt if the cancellation emrors are ex-
pected to be more than 3%, In this case, increass the lower cutof parmmeters cufl
or cuifr, decreass the matching radiuz rmaféch if pozsible, or else uze the R-matrix
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expanzion method of page 211 to solve the equations. An extreme error occurs if
the simultane ous equations from the matching conditions are singular.

Internal parameter error: Zometimes, the precalculation of array zizes iz inadequate.
For adwvanced users these can be improved by selective specification of the max-
coupi1:3) and expand(1:11) input arrays.

At the end of a FRE3CO caleulation, a final ‘accuracy analysis' iz presented.
This rechecks that the step size Aeme 15 small enough, and that ref is large enough.
Then, using the Coulomb trajectories described inBox 3.3 on page 03, it calculates
the minimnm scattering angles expected to be accurate bacause of the finite values
of rmatch and jimax.

EB.4 Fitting data: SFRE3CO

A first calenlation of cross ssctions using FRE3co will rarely be near the exper-
imental data. Perhaps the reaction model is too simplified, or pethaps the input
paramsters are not accurate enough. The optical potential, binding potentials, spec-
troscopic amplimdes or R-matrix reduced widths could well be adjusted to see if
the agreement between theory and experiment can be improved. The program
SFRE2CO searches for a %% minimnm when comparing the outputs of FREsCO
with sets of data, using the MINUIT search routines as discussed on page 405.

The inputs for SFREsCO specify the FRE3CO Input and cutput files, the number
and types of search variables, and the experimental data sets to be compared with.
These experimental data can be (fype=0) an angular distributien for fived energy,
(17 an excitation and angnlarcross-saction deuble distributions, or (2) an excitation
cross ssction for fixed angle. They could also be (3) an excitation function for the
total, reaction, fuslon or inelastic cross section, (4) an excitation phase shift for
fixed partial wave, (5) a desired factor for bound-state search, or (6) even a specific
experimental constraint on some search parameter.

The simplest and moest commen fitting requirement is to determine an optical
potential to fit the observed elastic scattering angular distribution. For example,
to find a proton optical potential to fit cross sections for scattering on 11%Cd at
27.90 MeV, we start with the normal FREsCO input of Box B.7. The cross sactions
will be calculated at the experimental angles, not those specified here. In order
to vary the real and imaginary potential strengths in this input, as well as the real
radius, we have the search file for SFRESCO of Box B 8. This search file begins
by identifying the previous FREsco input and naming the temmpeorary output file,
then giving the number of search variables and the number of experimental data
sets.

There are 3 &pot namelist lines in Box B.7 for the nuclear parts of potential
fp=l, so the variables of the interaction potentials (kikd=1) in the search are iden-
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p + 1120d aledlic
MaMELIST
AFRESCO hare 0,100 rmalch= 200000 jimire 00 jimaxe= 2000

hmire 000 {hrrae= 13000 fhine= 200 exjabl= 1

alabii= 273/
S PFARTITION namep='PFroton * ma=sp= 10000 zp= | nae= 1

namet' 11204 ' mawsl=112.0000 = 43 quak 0/

SSTATES jp= 05 plyp= 1 o= 00000 cpod= 1 ji= 0.0 phyb= 1 == 00000)
Gpariiion }
apod kp= 1 fype= 0 pl1:3= 112000 00000 {2000/
apod kp= 1 fype= 1 pl1:6= 52500 11700 07500 3.5000 13200 05100 }
apod kp= 1 fype= 2 pl1:6= 0000 00000 00000 35000 13200 06100 )
apod kp= 1 fype=3pl1:3= 6200 1.0100 07500/
apod )
Goverlap /
Gcoupling !

Box B.7: FRE3CO input file p-cd frin for proton scattering on £Cd

prcd it 'prcdd o’
41

Zwanable kind=1 name="r]"' kp=1 plin==2 col=2 pot=rmial=1 . <=p=0.01}
Zvanable kind=1 name=="y" kp=1 plin==2 col=1 potmia=50 0 <i=p=0.1!
Zvanable kind=1 name=="W kp=1 plin==2 col4 potmia=50 st=p=0.1}
Zvanable kind=1 name=="WLr kp=1 plin==3 col=4 poiaial=10. =t=p=0.1}
Zderia incal==0 idr=1|ab=F absar=T!

0545 0044

0475 00X

0451 0014

0447 000

0144 0004

0493 0010
0245 0005
0463 0014
. D485 0015

106, 0087 0.0

M0, 0135 0.0

130, 0481 000
%

LR ELEET

Box B.& SFRE3CO input p-cd search for proton scattering on 11#Cd

12

o Expaimanial data

- --- nial parameters
—— RAfled FH.I'E.ITIElEF‘B

Ecaliering angle (dag, o)

Fig. B.6. Initial and fitted proton scattering on 112024 at 27.9 Me'V
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tified by the speciication of kg and pline in the &varizble namelist in Box BB,
dlong with cel for the Index to the p array. The potential value gives the Initial
valua for the search, and step the initial magnitnde for trial changas. Deformations
can as well be searched upon. There are also parameters walmin and valmax,™ to
lirnit the range of that variable. Spectroscopic amplitides to be varied (kind=2) are
ldentified by the order mfrac In which they appear in the FREZCO Input in a &ofp
narmelist, and then by their Initial value afrar. Other variable kixds are described
in the FRE2CO Input manual

Experimental data sets are identified by thelr type specifications as listed above,
and then by date_file for name of data file with data, which can be *=" for this
saarch fila, "« for stdin (the dafault iz '="). Than paixts gives tha numbar of data
points (default: keep reading as many as possible), lzb is T or F for laboratory an-
gles and cross sections (default false), and emergy is lab energy for a type=0 dataset
{(default: use elab(!) from &fresco namalist). The abserr is true for abselute arrors
(default: false). Mext, idir iz —1 for cross-section data given as astrophysical 3-
factors, 0 for data given in absolute units (the default), and | as ratio to Rutherford.
Finally, iscaie iz —1 for dimensionless data, and 0 absolute data in units of fm®/sr,
1 for bisr, 2 for mbfsr (the default) and 3 for ubisr.

With these two files (Boxes B.7 and B.8), SFRE3CO Iz Invoked interactively.
First the name of the search file in Box B8 is given, then commands as in Table
B2. A miniomm set of commands will be p-cd.search / min / migrad / end /
plot. The cutput plot file (default name search plot) also contains the final values
of the searched variables. The fitted parameters in this exarople are V7 = 52.53
MeV,r0 = 1170 fm, W = 3.46 MeV and WD = 7.43 MeV with X*/N = 2.18.
The initial and final fits to the data are shown in Fig. B.a.

B.5 System requirements, compilations and installation

The website wiww fresco.org Uk containg a complete distribution set of files for
FREzCO and SFRE3CO, 3UMBING and SUMXEN. It containg the Input and cutput
files for all the examples in this Appendix B, along with a version of Appendix
B itself. The distribution files also contain input and output files for a range of
test cases for your Installation, as well as coples of the detailed input manuals for
FRE3CO and MINUIT.

The distribution set contains a set of precompiled binaries for FREsco and
BFRE3CO, as well as the source code. To compile the source, vou will need a
FORTRAN compiler for at least Fortran 90 or 95. The code iz in the directory
fres/source/, where the script mk attermpts to find the best compiler for vour sys-
tem, and then compils in a mbdirectory named by your system architecture arch

10 Both or pope of these mst be present.
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Table B2 SFREzCO fnput commands Words in typewriter font arete be

replaced with user values

Zommand Operation

Q query stanhs of szamh vadables
SETwar wal zet varable mumberwar to valoe wal.
FIX var fix variable number war (zet sbep=0).

STEF var ELep

SCAMwar wall wvalZ ecep
SHOW

LIMEplocfile

READ file

READ snapfile

ESCAMNemin emax estep
LM

LAGEAD

EMD

FLOTplocfile

EX

umfix variable war with step step.

scan variable war fom value wvall towalZ insteps of sEep.
list all datassts with current predicioms and x values.

wiite file [defanlt: seamh.plot) with theomtcal curves only.
mad plot output £11e for forther searches, if Do

if the name of enapfile conteime the sring “=nap’,

mad last sat of enap output enapfile froma previous fort. 1035

&can lab. enengy in incident chanoel

call MINUIT intemcively.

in MINUIT, perform MIGERAD search.

mium to SFRESCO from MINUIT.

wiite file (defalt: seamh.plot) with data and theory cimves.
emit (alzo at end of iput fil=)

and the compiler chosen using the makefile. You may have to adit the makefile to
set FFLAGS for your compiler, and set TIME and FLUSH according to vour system
libraries. After compilation, mk install copies the binaries to a standard binjarck/
directory for execution in other places.

The website will be regularly updated to Include descriptions of amy further
changes needed or advisable for the programs. All of the information on the
website Iz published under the conditions of the GINU Public License described
at W g orgdcopyleft/gpl html.
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clesical scattering, 63
closest appmach, 63
constant, &1
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coupled, 220
Whittaker, 130
penetabiling, 242
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point scattering, &0
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rdoced matrix element, 138, 143
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screened pobential, 52
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tmjectary, 238
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waye equation, 52
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adiabatic, 224
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oowupling, in feeco, 427
covanance
matrix, 396
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flocmation, 325
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lmockout, 354
Legendre sxpansion, 400
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mormalizaton, 371
per partial wave, 433
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three- body elaztic, 2738
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direct measurements, 364
direct mactions, 32
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dizcretization, 237, 285
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three-body projectle, 279
dis torted waves, 96
double folding, 151
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dripline, 176, 316, 353

DWEA, see distorted wave B orn approximation

dynamic polsrizeton potential, 323

effective
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interaction, 170, 3230
effective burming energy, 334
effective rading, 150
efficiency, 361
eikopal, 230-237, 383
black dizlk, 233
bowmdary condibon, 231
brealop croes sectom, 237
composite- body scattering, 234
coordinate, 231,234, 282
Coulomb contibution, 232
elz=tic cmes sechon, 236
el tic scattering, 232, 282, 283
equation, 231
fevr-body method, 24
inclusive cross secton, 237
kmockout, 237
optcel limdt, 235
phaze, 231
machon crogs secton, 236
S matrix, 234
scattering smplitde, 234
stripping, 237
thickness function, 253
three-body projectles, 282
validity, 233
wave fupchon, 231
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elastic scattering, 30, 38, 35, 19§, 224, 378

cikomal, 232, 282

in Fremco, 429

three- body, 278
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mltipole, 180

multipole operator, 141
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vector potential, 120
electron scresning, 341
energy
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windaw, 337
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Toss sechom, 311
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equilibrinm

moclear statiztical, 330

themodynamic, 345
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exdiation energy, 29
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experiment
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Faddeev wave functon, 243
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rar=itom, 155, 389
ramsition probability, 191
Fermi energy, 131,173
Fezhbach, 170
fimbe range, 147
fitting
Eayesian method, 407
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progmesive improvement policy, 405
E malrix, 289
stmtegies, 406
thecretical expectations, 407
fimed point, 345
flire, 42, ¢ current, 333
i factors, 79
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fresze out, 351
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compilation and installation, 442

emors, 438

ioput and output files, 428

mdial nodez, 158, 190
fuzion, 31, 154, 343, 367

galactic abundancies, 366
(ZAmmon
dizmibubon fupchon, 335
factar, 244
peak, 335
Gamor-Teller
manzibon, 153, 389
tmnzition probability, 191
sange
Coulomb, 111, 119, 1587
imarance, 71,111
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Gareian method, 285
Green's funchon, $8-93
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Hemmitian, §7
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hard sphere phase shift, 20
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Hartres-Fock, 175
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branching mtio, 313
decay model, 315

hegvy elementz, 19,20

heavy particle mnefer, 152

Hez=s matrix, 309
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Hilbert epace, 170
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mdirect methods, 334
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coupling, 137, 197
fitting, 403
in Fremco, 429
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miational model, 139
seattering, X0
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vibration, 144
imert group, 188
mhomogeneous soluton, 20, 203
nztabiliy, 200
mtegral forme, 89
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miederence, 377, 354, 387, 391
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mirimic quadmpole moment, 120
miroder state, 173
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Eoepin, 103, 188
composite systems, 104
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partial iteration, 206
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Johm=on and Soper, 378
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cikomal, 237, 383
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stripping, 383
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Gilbert and Camercno, 320
level matrix, 301
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linear accelerator, 357
Lippmann-Sclmringer equation, 93
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lomg wavelength approximation, 157
Lorentzian averaging, 325
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levar-kr potential, 170
lovorer radial cutoff, 201
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main sequence stars, 9
many-body effects, 375
matrix element
general, 190
WLAX-lab experiment, 367
Mlawell eqatiom, 110
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mean field model, 175
mesom, 154
microecopic custer model, 351
minimization, 397
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scattering smplimde, 20
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mltiple scattering, 235, 284
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po-core shell model, 170
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pon-locality, 70, 147, 196, 207, 435
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porm overlap, 235, 202
pormal distribubon, 308, 396
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pormalization

bound state, 131, 169
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Dovae, 25, 3cd
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Momeroy method, 195

oblate, 140
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optical potentisl, see potental, op dcal
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oecillator quanta, 1 72

overlep fumction, 131, 183190, 371, 380, 435

anbzymmetized, 188

oepin, 1 &7
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Fadé
accelemtion, 206
approximants, 207
pairing, 1 76
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partial wave, 42, 130
expareion, 50,224, 251, 281

Index

partial width

photom, 161

partial-wrave

equaton, 51

partition, 423

partidon fimcton, 343
Fauli principle, 102, 1 55
penetability, 133, see Coulomb pepstrability, sa= R

matrix penetrabiliny

peripheml, 375,376, 370
phase zhift, 56

background, &4
hard sphere, 20

muclear, 63
E matrix, 250

phase space, 191
phonon states, 144

photo-disintsgration, 23, 31, 113, 347, 387

photo-producton, 1132, 153
photom, 7, 41

beam, 367
black body, 340

combining with particle chanpels, 160

coupled equatloms, 139

electric, 118
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lomg wavelength approxmation, 157
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partial wave, |16

partial width, 1641

plane vawve, 120

polarzed, 367

Siegert theomm, 158
ingle-photon reactons, 137
Tmakix, 118

wave funchom, 115
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photon, 120
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Forter Thomes statistics, 307
post wanefer cowpling, 146
post-form interacton, #6
post-prior, 202

equivalence in first order, 101

pobential

adiabatic, 234
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bare, 258, 403

binding, 129, 146

brealmp couplings, 235

complex, 71-73
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coupling, 133—166
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disgomal, 197
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energy dependence, 127
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Eoepin dependence, 1E7
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Johmon-Soper, 225
Lane, 154
bocally global, 373
bbng range couplings, 256
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LY, 184
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opical, 72, 125, 230, 259, 373, 390, 420
ambiguity, 401
bound state, 133
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defimition, 322
fiting, 377, 401
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soume of, 321
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mdivs scaling, 135
single particle, 373
sphezical, 48
spin-dependent, 135-137
gpin-orhit, 72, 130, 134
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thres-body, 168
three-body coupling, 274
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vector, 136
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Woods-Saxom, T2, 136
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pricr mEnefer coupling, 144
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normal, 308, 304
progmesive improvement policy, 403
projecton opemtor, 170
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Qvalue, 3, 146, 373
quadmpole
moment, 144, 120
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single particle, 1 51
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definition
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multi-chamel, 200
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fiting data, 289
hard-sphere phase shift, 20
by brid, 303
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level matrix formulation, 300
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method, 207, 211-219
penetabiling, 290, 28
phaze zhift, 290
phemomenology, 283304
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potential scattering, 302
scattering wave fimctons, 218
shift fimcton, 289, 298
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production, 333
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mndom-phase approximation, 17
macton nerwrod:, 32
coupled equations, 342
explict and implicit, 344
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mduced mmnsition probability, 132
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Feich-Idoomr approximation, 309
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Siegert theorem, 71, 158
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Sommerfeld pammeter, 3, 41,62, 232, 4
bomd s take, 130
spectator spin, 133, 147
Epeciroscopic
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experimental, 371
reduction, 354
quadrupole moment, 180
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epin weighting factor, §2, 299
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single partcle, 129
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sreng th fimcton, 330
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supemonductivity, 1 76
Eupemovas, Zl, 25
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T matrix, 57, T4
Borp series, 97
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three-body projectle, 273
vector form, 371
distorted waves, 96
plane waves, 93
wlation o scattering amplimde, 54
modem, 357
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EDzor interacton, 391
en=0T potental, see potential, knsor
thermal diztibubon, 334
Thomas spproximaton, &
three-body, see hypearepherical
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Eymptobc, 277
basis ramsfommation, 27
bin wave fimcion, 234
bound state, 268
bound state asympotic, 274
breakup observables, 260
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oo eigenstate, 269
oomelations, E72
ooupling pobential, 274
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Invperradial equatbons, 274
Invperradial momentum, 277
plane wave, 277
Raynal-Revai coefficients, 275
ms mdivs, 272
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scattering amplimds, 278
Tbazis, 271
otal wave fupcton, 274
tano-dimenzional wave functon, 273
WEE approrimaton, 243
Fbazizs, 271
time mverzal imarance, $§
time-dependent Hanres-Fock, 176
trar=fer, 20, 30
adiabatic T matriz, 225
angular momenhmm, 373
breakup, 380
coupling, 145, 197, 371
distorted wave Boro approximation, 101
LWEA, 372
fimbe range, 147
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parameters, 379
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stripping, 237
gub-Coulomb, 150

to the conimmim, 152
poro-step, 154
2o mnge, 149
mneformed harmeonic cecillatar, 174, 285
manzidon
disrete states, 190
Femmi, 155
Gameew-Teller, 155
pommal parity, 138
potential, fee potental, wamsiton
probabilites, 27
srength, 325
mmnelational imvariance, |73, sae Jacobi coordinate
mmnemission coefficient, 313, 353
mmlt-chamel, 315
mEnEverEe gauge, fof gauge, Coulomb
tmial zoluton, 195
tdple-alpha macton, 13-14
TRIUMF, I3AC experiment, 358, 366
poro potential fommula, 94

umitatity, 86
miks
barre, 42
steradiames, 42

varance, 396
vector coupling cometant, 191
vector potential, 111

electric and magpetic, 120

longimdinal, 172
vector spherical harmomic, 117
velocity

thermal, 334

thermal distributon, 335
vibmtonal model, 144
virmal photon mumber, 337
virtual ztate, 68

waibing point, 23

wave fiumction
full ecattering, 36
photom, 1135
mdial, 51

wave mumber, 39
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weak intemction, 7, 350
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Whittabker fimction, 130, 151
width, 30
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partial, 300
otal formal, 29
width flucaton comecton, 311, 315
Pigoer limit, 254
Wigner-Eckhart theomm, 135
WEE approrimaton, 240243
Eymptobc form, 242
caphme, 243
decay, 244
Gamonr factor, @44
geperal eolubon, @41
lifetime, 244
peoemability, 242
phase shift, 242
mdial equation, 240
mdial wave fumction, 241, 243
scattering amplimds, 242
three-body decay, 245
validity, 240
Wronskisn, 53, 289
Wy epeilon algorithm, 308
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